Margaret A Shanafield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods. Journal of Hydrology, 2014, 511, 518-529.	5.4	143
2	Is the Hyporheic Zone Relevant beyond the Scientific Community?. Water (Switzerland), 2019, 11, 2230.	2.7	113
3	Uncertainty in thermal time series analysis estimates of streambed water flux. Water Resources Research, 2011, 47, .	4.2	78
4	Groundwater recharge via infiltration through an ephemeral riverbed, central Australia. Journal of Arid Environments, 2015, 117, 47-58.	2.4	66
5	Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1436.	6.5	63
6	Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream. Environmental Science & Technology, 2018, 52, 12285-12294.	10.0	60
7	An overview of the hydrology of nonâ€perennial rivers and streams. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1504.	6.5	58
8	The effect of streambed heterogeneity on groundwater-surface water exchange fluxes inferred from temperature time series. Water Resources Research, 2015, 51, 198-212.	4.2	57
9	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophysical Research Letters, 2021, 48, e2020GL090794.	4.0	54
10	Assessing placement bias of the global river gauge network. Nature Sustainability, 2022, 5, 586-592.	23.7	51
11	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	49
12	Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.	5.2	47
13	Characterisation of hyporheic exchange in a losing stream using radon-222. Journal of Hydrology, 2014, 519, 94-105.	5.4	43
14	Fiberâ€Optic Sensing for Environmental Applications: Where We Have Come From and What Is Possible. Water Resources Research, 2018, 54, 8552-8557.	4.2	43
15	What Triggers Streamflow for Intermittent Rivers and Ephemeral Streams in Lowâ€Gradient Catchments in Mediterranean Climates. Water Resources Research, 2019, 55, 9926-9946.	4.2	43
16	Residence times of streamâ€groundwater exchanges due to transient stream stage fluctuations. Water Resources Research, 2016, 52, 2059-2073.	4.2	39
17	Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: A global perspective. Journal of Hydrology, 2021, 597, 126170.	5.4	37
18	Field comparison of methods for estimating groundwater discharge by evaporation and evapotranspiration in an arid-zone playa. Journal of Hydrology, 2015, 527, 1073-1083.	5.4	35

MARGARET A SHANAFIELD

#	Article	IF	CITATIONS
19	Uncertainty of natural tracer methods for quantifying river–aquifer interaction in a large river. Journal of Hydrology, 2016, 535, 135-147.	5.4	34
20	Induced Temperature Gradients to Examine Groundwater Flowpaths in Open Boreholes. Ground Water, 2014, 52, 943-951.	1.3	31
21	Error in hydraulic head and gradient time-series measurements: a quantitative appraisal. Hydrology and Earth System Sciences, 2019, 23, 3603-3629.	4.9	31
22	Use of heatâ€based vertical fluxes to approximate total flux in simple channels. Water Resources Research, 2010, 46, .	4.2	29
23	Aquifer response to surface water transience in disconnected streams. Water Resources Research, 2012, 48, .	4.2	26
24	Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resources Research, 2014, 50, 1474-1489.	4.2	24
25	Active heat pulse sensing of 3-D-flow fields in streambeds. Hydrology and Earth System Sciences, 2018, 22, 1917-1929.	4.9	21
26	Drought conditions and recovery in the Coorong wetland, south Australia in 1997–2013. Estuarine, Coastal and Shelf Science, 2015, 163, 175-184.	2.1	20
27	The vertical variability of hyporheic fluxes inferred from riverbed temperature data. Water Resources Research, 2014, 50, 3994-4010.	4.2	19
28	A method for estimating spatially variable seepage and hydraulic conductivity in channels with very mild slopes. Hydrological Processes, 2014, 28, 51-61.	2.6	16
29	Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Science, 2022, 41, 167-182.	1.8	15
30	Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan. Biogeochemistry, 2010, 101, 357-368.	3.5	14
31	Short―and longâ€ŧerm evapotranspiration rates at ecological restoration sites along a large river receiving rare flow events. Hydrological Processes, 2017, 31, 4328-4337.	2.6	14
32	Towards Quantifying the Likelihood of Water Resource Impacts from Unconventional Gas Development. Ground Water, 2019, 57, 547-561.	1.3	12
33	Catchmentâ€Scale Characterization of Intermittent Stream Infiltration; a Geophysics Approach. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005330.	2.8	12
34	Comparison of infiltration rates in the dry riverbed of the Colorado River Delta during environmental flows. Ecological Engineering, 2017, 106, 675-682.	3.6	11
35	A Numerical Stream Transport Modeling Approach Including Multiple Conceptualizations of Hyporheic Exchange and Spatial Variability to Assess Contaminant Removal. Water Resources Research, 2020, 56, e2019WR024987.	4.2	11
36	Science Gets Up to Speed on Dry Rivers. Eos, 2020, 101, .	0.1	10

MARGARET A SHANAFIELD

#	Article	IF	CITATIONS
37	Ecosystem and Social Construction: an Interdisciplinary Case Study of the Shurkul Lake Landscape in Khorezm, Uzbekistan Ecology and Society, 2011, 16, .	2.3	9
38	Flux dynamics at the groundwater-surface water interface in a tropical catchment. Limnologica, 2018, 68, 36-45.	1.5	9
39	Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment. Hydrology and Earth System Sciences, 2021, 25, 4299-4317.	4.9	7
40	Rainy season drought severity trend analysis of the Indonesian maritime continent. International Journal of Climatology, 2021, 41, E2194.	3.5	6
41	Mapping catchment-scale unmonitored groundwater abstractions: Approaches based on soft data. Journal of Hydrology: Regional Studies, 2020, 30, 100695.	2.4	5
42	Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: The role of geologic controls. Journal of Hydrology: Regional Studies, 2021, 35, 100814.	2.4	5
43	Determination of rainy season onset and cessation based on a flexible driest period. Theoretical and Applied Climatology, 2022, 148, 91-104.	2.8	5
44	Predicting wildfire induced changes to runoff: A review and synthesis of modeling approaches. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	6.5	5
45	Variations on thermal transport modelling of subsurface temperatures using high resolution data. Advances in Water Resources, 2016, 89, 1-9.	3.8	4
46	Spatial and temporal variation in rainy season droughts in the Indonesian Maritime Continent. Journal of Hydrology, 2021, 603, 126999.	5.4	4
47	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	2.7	4
48	Spatial and temporal patterns of nearshore clarity in Lake Tahoe from fine resolution turbidity measurements. Lake and Reservoir Management, 2010, 26, 178-184.	1.3	3
49	Using basic metrics to analyze high-resolution temperature data in the subsurface. Hydrogeology Journal, 2017, 25, 1501-1508.	2.1	3
50	A Comparison of Timeâ€Frequency Signal Processing Methods for Identifying Nonâ€Perennial Streamflow Events From Streambed Surface Temperature Time Series. Water Resources Research, 2021, 57, e2020WR028670.	4.2	3
51	Predicting Water Resource Impacts of Unconventional Gas Using Simple Analytical Equations. Ground Water, 2017, 55, 387-398.	1.3	2
52	Development of tools to estimate conveyance losses in the Truckee River, USA. Hydrogeology Journal, 2011, 19, 329-338.	2.1	1
53	A visual approach to demonstrate groundwater flow processes. Hydrological Processes, 2019, 33, 3236-3238.	2.6	1
54	3.7 Water chemistry and zooplankton communities in drainage lakes in downstream Amu Darya,		1

Central Asia. , 2015, , 179-196.

#	ARTICLE	IF	CITATIONS
55	Water-level recession characteristics in isolated pools within non-perennial streams. Advances in Water Resources, 2022, 166, 104267.	3.8	1
56	Water Quality and Aquatic Ecosystems of Irrigation Runoff Lakes in Khorezm, Uzbekistan. , 2008, , .		0
57	Investigating Aquatic Ecosystems of Small Lakes in Khorezm, Uzbekistan. , 2009, , .		0