Florian Auras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999223/publications.pdf Version: 2024-02-01

FLODIAN ALIDAS

#	Article	IF	CITATIONS
1	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	31.4	715
2	Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nature Chemistry, 2016, 8, 310-316.	13.6	436
3	Highly efficient luminescence from space-confined charge-transfer emitters. Nature Materials, 2020, 19, 1332-1338.	27.5	413
4	A Photoconductive Thienothiopheneâ€Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angewandte Chemie - International Edition, 2013, 52, 2920-2924.	13.8	385
5	Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction. Journal of the American Chemical Society, 2014, 136, 17802-17807.	13.7	354
6	Room Temperature Synthesis of Covalent–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2015, 137, 1016-1019.	13.7	257
7	Perylene-Based Covalent Organic Frameworks for Acid Vapor Sensing. Journal of the American Chemical Society, 2019, 141, 15693-15699.	13.7	212
8	Synchronized Offset Stacking: A Concept for Growing Large-Domain and Highly Crystalline 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 16703-16710.	13.7	199
9	Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano, 2014, 8, 4042-4052.	14.6	188
10	Spectrally Switchable Photodetection with Near-Infrared-Absorbing Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 12035-12042.	13.7	181
11	Solvatochromic covalent organic frameworks. Nature Communications, 2018, 9, 3802.	12.8	171
12	From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach. Journal of the American Chemical Society, 2016, 138, 1234-1239.	13.7	147
13	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	26.0	143
14	Enforcing Extended Porphyrin J-Aggregate Stacking in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16544-16552.	13.7	123
15	Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8194-8199.	13.7	121
16	Exploration of MOF nanoparticle sizes using various physical characterization methods – is what you measure what you get?. CrystEngComm, 2016, 18, 4359-4368.	2.6	100
17	Fast-Switching Vis–IR Electrochromic Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 7351-7357.	13.7	95
18	Synthesis and Stability of Homoleptic Metal(III) Tetramethylaluminates. Journal of the American Chemical Society, 2011, 133, 6323-6337.	13.7	90

FLORIAN AURAS

#	Article	IF	CITATIONS
19	Excited-State Dynamics in Fully Conjugated 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11565-11571.	13.7	89
20	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Employing a Cationic Ï€â€Conjugated Polymer. Advanced Materials, 2021, 33, e2103640.	21.0	77
21	Lengthâ€Dependent Charge Generation from Vertical Arrays of Highâ€Aspectâ€Ratio ZnO Nanowires. Chemistry - A European Journal, 2013, 19, 14665-14674.	3.3	70
22	Atomicâ€Layerâ€Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO ₂ in Highâ€Efficiency Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1400214.	19.5	52
23	A Photoactive Porphyrin-Based Periodic Mesoporous Organosilica Thin Film. Journal of the American Chemical Society, 2013, 135, 18513-18519.	13.7	48
24	Characterization of Interfacial Modifiers for Hybrid Solar Cells. Journal of Physical Chemistry C, 2011, 115, 15081-15088.	3.1	42
25	Slow carrier relaxation in tin-based perovskite nanocrystals. Nature Photonics, 2021, 15, 696-702.	31.4	40
26	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nature Communications, 2021, 12, 6519.	12.8	32
27	A Zinc Phthalocyanine Based Periodic Mesoporous Organosilica Exhibiting Charge Transfer to Fullerenes. Chemistry - A European Journal, 2014, 20, 14971-14975.	3.3	25
28	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	5.5	25
29	Hydrogen and nitrogen codoping of anatase TiO2 for efficiency enhancement in organic solar cells. Scientific Reports, 2017, 7, 17839.	3.3	24
30	Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2017, 9, 22773-22787.	8.0	23
31	Femtosecond Transient Absorption Microscopy of Singlet Exciton Motion in Side-Chain Engineered Perylene-Diimide Thin Films. Journal of Physical Chemistry A, 2020, 124, 2721-2730.	2.5	23
32	Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials & Interfaces, 2018, 10, 20728-20739.	8.0	22
33	Functionalization of Quinoxalines by Using TMP Bases: Preparation of Tetracyclic Heterocycles with High Photoluminescene Quantum Yields. Chemistry - A European Journal, 2015, 21, 1102-1107.	3.3	20
34	Functionalized PCN-6 metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 51-55.	4.4	17
35	Preparation of Polyfunctional Naphthyridines by Cobalt-Catalyzed Cross-Couplings of Halogenated Naphthyridines with Magnesium and Zinc Organometallics. Organic Letters, 2017, 19, 6384-6387.	4.6	17
36	Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides. Journal of the American Chemical Society, 2022, 144, 368-376.	13.7	15

FLORIAN AURAS

#	Article	IF	CITATIONS
37	Selective Functionalization of Tetrathiafulvalene Using Mg- and Zn-TMP-Bases: Preparation of Mono-, Di-, Tri-, and Tetrasubstituted Derivatives. Organic Letters, 2015, 17, 5356-5359.	4.6	14
38	Synthesis and Reactivity of Triazaphenanthrenes. Organic Letters, 2016, 18, 3158-3161.	4.6	10
39	Synthesis and characterization of CuInS2 thin film structures. Journal of Materials Science, 2012, 47, 1669-1676.	3.7	8