
## David Kenneth Gifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7999211/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Transcriptional Regulatory Networks in <i>Saccharomyces cerevisiae</i> . Science, 2002, 298, 799-804.                                                                                                        | 12.6 | 2,706     |
| 2  | Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnology, 2014, 32, 171-178.                                            | 17.5 | 415       |
| 3  | Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563, 646-651.                                                                                                     | 27.8 | 414       |
| 4  | Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics, 2016, 32, i121-i127.                                                                                          | 4.1  | 386       |
| 5  | High Resolution Genome Wide Binding Event Finding and Motif Discovery Reveals Transcription Factor<br>Spatial Binding Constraints. PLoS Computational Biology, 2012, 8, e1002638.                            | 3.2  | 261       |
| 6  | High-throughput mapping of regulatory DNA. Nature Biotechnology, 2016, 34, 167-174.                                                                                                                          | 17.5 | 217       |
| 7  | Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nature Neuroscience, 2013, 16, 1219-1227.                                                            | 14.8 | 195       |
| 8  | Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals. Nature<br>Neuroscience, 2013, 16, 1191-1198.                                                                           | 14.8 | 140       |
| 9  | Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nature Neuroscience, 2014, 17, 1046-1054.                                                           | 14.8 | 121       |
| 10 | A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell, 2019, 176, 790-804.e13.                                                              | 28.9 | 103       |
| 11 | Wnt Signaling Separates the Progenitor and Endocrine Compartments during Pancreas Development.<br>Cell Reports, 2019, 27, 2281-2291.e5.                                                                      | 6.4  | 100       |
| 12 | MARIS: Method for Analyzing RNA following Intracellular Sorting. PLoS ONE, 2014, 9, e89459.                                                                                                                  | 2.5  | 93        |
| 13 | Antibody complementarity determining region design using high-capacity machine learning.<br>Bioinformatics, 2020, 36, 2126-2133.                                                                             | 4.1  | 92        |
| 14 | A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5364-5369. | 7.1  | 90        |
| 15 | Predicting the impact of non-coding variants on DNA methylation. Nucleic Acids Research, 2017, 45, e99-e99.                                                                                                  | 14.5 | 81        |
| 16 | An Integrated Model of Multiple-Condition ChIP-Seq Data Reveals Predeterminants of Cdx2 Binding.<br>PLoS Computational Biology, 2014, 10, e1003501.                                                          | 3.2  | 78        |
| 17 | Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of<br>Transient Enhancers. Neuron, 2016, 92, 1252-1265.                                                          | 8.1  | 70        |
| 18 | Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target<br>Human Haplotype Distributions. Cell Systems, 2020, 11, 131-144.e6.                                       | 6.2  | 50        |

DAVID KENNETH GIFFORD

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide<br>Selection for Therapeutic Design. Cell Systems, 2019, 9, 159-166.e3.                              | 6.2  | 46        |
| 20 | Discovering homotypic binding events at high spatial resolution. Bioinformatics, 2010, 26, 3028-3034.                                                                                               | 4.1  | 43        |
| 21 | A novel <i>k</i> -mer set memory (KSM) motif representation improves regulatory variant prediction.<br>Genome Research, 2018, 28, 891-900.                                                          | 5.5  | 42        |
| 22 | GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding. Bioinformatics, 2016, 32, 490-496.                                                    | 4.1  | 40        |
| 23 | Predicting gene expression in massively parallel reporter assays: A comparative study. Human<br>Mutation, 2017, 38, 1240-1250.                                                                      | 2.5  | 39        |
| 24 | Interactions between chromosomal and nonchromosomal elements reveal missing heritability.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7719-7722. | 7.1  | 37        |
| 25 | Predicted Cellular Immunity Population Coverage Gaps for SARS-CoV-2 Subunit Vaccines and Their Augmentation by Compact Peptide Sets. Cell Systems, 2021, 12, 102-107.e4.                            | 6.2  | 35        |
| 26 | Cas9 Functionally Opens Chromatin. PLoS ONE, 2016, 11, e0152683.                                                                                                                                    | 2.5  | 34        |
| 27 | Identification of new branch points and unconventional introns in <i>Saccharomyces cerevisiae</i> .<br>Rna, 2016, 22, 1522-1534.                                                                    | 3.5  | 32        |
| 28 | DeepLigand: accurate prediction of MHC class I ligands using peptide embedding. Bioinformatics, 2019, 35, i278-i283.                                                                                | 4.1  | 32        |
| 29 | Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding. BMC Genomics, 2017, 18, 45.                                                              | 2.8  | 27        |
| 30 | Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions. Nature Communications, 2021, 12, 3222.                                    | 12.8 | 27        |
| 31 | An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. Neuron, 2022, 110, 70-85.e6.                                                            | 8.1  | 22        |
| 32 | A synergistic DNA logic predicts genome-wide chromatin accessibility. Genome Research, 2016, 26, 1430-1440.                                                                                         | 5.5  | 18        |
| 33 | Universal Count Correction for High-Throughput Sequencing. PLoS Computational Biology, 2014, 10, e1003494.                                                                                          | 3.2  | 17        |
| 34 | Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay. Genome Research, 2020, 30, 1468-1480.                         | 5.5  | 16        |
| 35 | Accurate eQTL prioritization with an ensembleâ€based framework. Human Mutation, 2017, 38, 1259-1265.                                                                                                | 2.5  | 15        |
| 36 | Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency. Nature Communications, 2021, 12, 5111.                                                                      | 12.8 | 15        |

DAVID KENNETH GIFFORD

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chemogenetic System Demonstrates That Cas9 Longevity Impacts Genome Editing Outcomes. ACS<br>Central Science, 2020, 6, 2228-2237.                                          | 11.3 | 14        |
| 38 | Comprehensive Mapping of Key Regulatory Networks that Drive Oncogene Expression. Cell Reports, 2020, 33, 108426.                                                           | 6.4  | 14        |
| 39 | Visualizing complex feature interactions and feature sharing in genomic deep neural networks. BMC<br>Bioinformatics, 2019, 20, 401.                                        | 2.6  | 13        |
| 40 | A Multiplexed Barcodelet Single-Cell RNA-Seq Approach Elucidates Combinatorial Signaling Pathways that Drive ESC Differentiation. Cell Stem Cell, 2020, 26, 938-950.e6.    | 11.1 | 12        |
| 41 | A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding. ELife, 0, 11,                                                                   | 6.0  | 12        |
| 42 | IDR2D identifies reproducible genomic interactions. Nucleic Acids Research, 2020, 48, e31-e31.                                                                             | 14.5 | 10        |
| 43 | Ranking reprogramming factors for cell differentiation. Nature Methods, 2022, 19, 812-822.                                                                                 | 19.0 | 10        |
| 44 | Discovering differential genome sequence activity with interpretable and efficient deep learning. PLoS<br>Computational Biology, 2021, 17, e1009282.                       | 3.2  | 9         |
| 45 | High resolution discovery of chromatin interactions. Nucleic Acids Research, 2019, 47, e35-e35.                                                                            | 14.5 | 8         |
| 46 | Machine learning optimization of peptides for presentation by class II MHCs. Bioinformatics, 2021, 37, 3160-3167.                                                          | 4.1  | 8         |
| 47 | Machine learning based CRISPR gRNA design for therapeutic exon skipping. PLoS Computational Biology, 2021, 17, e1008605.                                                   | 3.2  | 7         |
| 48 | Differential chromatin profiles partially determine transcription factor binding. PLoS ONE, 2017, 12, e0179411.                                                            | 2.5  | 5         |
| 49 | spatzie: an R package for identifying significant transcription factor motif co-enrichment from enhancer–promoter interactions. Nucleic Acids Research, 2022, 50, e52-e52. | 14.5 | 2         |
| 50 | Detection of gene cis-regulatory element perturbations in single-cell transcriptomes. PLoS<br>Computational Biology, 2021, 17, e1008789.                                   | 3.2  | 0         |
| 51 | seqgra: principled selection of neural network architectures for genomics prediction tasks.<br>Bioinformatics, 2022, 38, 2381-2388.                                        | 4.1  | 0         |
| 52 | Machine learning based CRISPR gRNA design for therapeutic exon skipping. , 2021, 17, e1008605.                                                                             |      | 0         |
| 53 | Machine learning based CRISPR gRNA design for therapeutic exon skipping. , 2021, 17, e1008605.                                                                             |      | 0         |
| 54 | Machine learning based CRISPR gRNA design for therapeutic exon skipping. , 2021, 17, e1008605.                                                                             |      | 0         |

4

| #  | Article                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Machine learning based CRISPR gRNA design for therapeutic exon skipping. , 2021, 17, e1008605.                           |     | Ο         |
| 56 | Ultra high diversity factorizable libraries for efficient therapeutic discovery. Genome Research, 0, ,<br>gr.276593.122. | 5.5 | 0         |