Kevin M Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7997812/publications.pdf

Version: 2024-02-01

41 papers

975 citations

430874 18 h-index 30 g-index

41 all docs

41 docs citations

41 times ranked

1009 citing authors

#	Article	IF	Citations
1	MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 2008, 60, 564-574.	3.0	90
2	Measuring glomerular number and size in perfused kidneys using MRI. American Journal of Physiology - Renal Physiology, 2011, 300, F1454-F1457.	2.7	87
3	MRI-based glomerular morphology and pathology in whole human kidneys. American Journal of Physiology - Renal Physiology, 2014, 306, F1381-F1390.	2.7	87
4	MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews, 2014, 74, 75-94.	13.7	66
5	Small Blob Identification in Medical Images Using Regional Features From Optimum Scale. IEEE Transactions on Biomedical Engineering, 2015, 62, 1051-1062.	4.2	52
6	Phenotyping by magnetic resonance imaging nondestructively measures glomerular number and volume distribution in mice with and without nephron reduction. Kidney International, 2016, 89, 498-505.	5.2	52
7	Measuring rat kidney glomerular number and size in vivo with MRI. American Journal of Physiology - Renal Physiology, 2018, 314, F399-F406.	2.7	42
8	Wireless Amplified Nuclear MR Detector (WAND) for High-Spatial-Resolution MR Imaging of Internal Organs: Preclinical Demonstration in a Rodent Model. Radiology, 2013, 268, 228-236.	7.3	38
9	Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. Magnetic Resonance in Medicine, 2010, 64, 1260-1266.	3.0	35
10	Why and how we determine nephron number. Pediatric Nephrology, 2014, 29, 575-580.	1.7	35
11	Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1735-1745.	3.3	33
12	Efficient Small Blob Detection Based on Local Convexity, Intensity and Shape Information. IEEE Transactions on Medical Imaging, 2016, 35, 1127-1137.	8.9	32
13	Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magnetic Resonance in Medicine, 2013, 69, 853-861.	3.0	28
14	Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatric Research, 2020, 87, 1185-1192.	2.3	28
15	Disruptive chemical doping in a ferritinâ€based iron oxide nanoparticle to decrease <i>r</i> ₁ â€weighted MRI. Contrast Media and Molecular Imaging, 2014, 9, 323-332.	0.8	27
16	MRI tools for assessment of microstructure and nephron function of the kidney. American Journal of Physiology - Renal Physiology, 2016, 311, F1109-F1124.	2.7	27
17	In vivo measurements of kidney glomerular number and size in healthy and Os/+ mice using MRI. American Journal of Physiology - Renal Physiology, 2019, 317, F865-F873.	2.7	24
18	Nephron number and its determinants: a 2020 update. Pediatric Nephrology, 2021, 36, 797-807.	1.7	24

#	Article	IF	CITATIONS
19	Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney International, 2021, 99, 173-185.	5.2	20
20	Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis. Scientific Reports, 2020, 10, 326.	3.3	19
21	Is acute kidney injury a harbinger for chronic kidney disease?. Current Opinion in Pediatrics, 2018, 30, 236-240.	2.0	18
22	Beyond the tubule: pathological variants of <i>LRP2</i> , encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F988-F999.	2.7	13
23	U-Net with optimal thresholding for small blob detection in medical images. , 2019, , .		12
24	Mapping vascular and glomerular pathology in a rabbit model of neonatal acute kidney injury using <scp>MRI</scp> . Anatomical Record, 2020, 303, 2716-2728.	1.4	12
25	New imaging tools to measure nephron number <i>in vivo</i> : opportunities for developmental nephrology. Journal of Developmental Origins of Health and Disease, 2021, 12, 179-183.	1.4	10
26	Estimating Nephron Number from Biopsies: Impact on Clinical Studies. Journal of the American Society of Nephrology: JASN, 2022, 33, 39-48.	6.1	9
27	Measuring the intrarenal distribution of glomerular volumes from histological sections. American Journal of Physiology - Renal Physiology, 2016, 310, F1328-F1336.	2.7	8
28	Image analysis techniques to map pyramids, pyramid structure, glomerular distribution, and pathology in the intact human kidney from 3-D MRI. American Journal of Physiology - Renal Physiology, 2021, 321, F293-F304.	2.7	8
29	Use of Cationized Ferritin Nanoparticles to Measure Renal Glomerular Microstructure with MRI. Methods in Molecular Biology, 2016, 1397, 67-79.	0.9	8
30	Mapping nephron mass in vivo using positron emission tomography. American Journal of Physiology - Renal Physiology, 2021, 320, F183-F192.	2.7	7
31	Small Blob Detector Using Bi-Threshold Constrained Adaptive Scales. IEEE Transactions on Biomedical Engineering, 2021, 68, 2654-2665.	4.2	7
32	Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Scientific Reports, 2021, 11, 21667.	3.3	4
33	Dynamic Contrast Enhancement (DCE) MRI–Derived Renal Perfusion and Filtration: Basic Concepts. Methods in Molecular Biology, 2021, 2216, 205-227.	0.9	3
34	Mapping kidney tubule diameter ex vivo by diffusion MRI. American Journal of Physiology - Renal Physiology, 2021, 320, F934-F946.	2.7	3
35	Delivering on the potential of measuring nephron number in the clinic. Nature Reviews Nephrology, 2022, 18, 271-272.	9.6	3
36	The relationship between diffusion heterogeneity and microstructural changes in high-grade gliomas using Monte Carlo simulations. Magnetic Resonance Imaging, 2022, 85, 108-120.	1.8	2

3

#	Article	IF	CITATIONS
37	Novel MR imaging and theranostics using Nano-DDS. Drug Delivery System, 2015, 30, 47-53.	0.0	1
38	Analysis Protocol for Dynamic Contrast Enhanced (DCE) MRI of Renal Perfusion and Filtration. Methods in Molecular Biology, 2021, 2216, 637-653.	0.9	1
39	Design and Verification of Novel Low-Cost MR-Guided Small-Animal Stereotactic System. Journal of Medical and Biological Engineering, 2016, 36, 526-535.	1.8	0
40	Computational efficient Variational Bayesian Gaussian Mixture Models via Coreset., 2016,,.		0
41	MRI shines (radiofrequency) light on kidney physiology. American Journal of Physiology - Renal Physiology, 2016, 310, F41-F42.	2.7	0