
Avishek Nag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7995723/publications.pdf Version: 2024-02-01

AVISHER NAC

#	Article	IF	CITATIONS
1	Secret-Key Provisioning With Collaborative Routing in Partially-Trusted-Relay-based Quantum-Key-Distribution-Secured Optical Networks. Journal of Lightwave Technology, 2022, 40, 3530-3545.	4.6	25
2	An Efficient Detour Computation Scheme for Electric Vehicles to Support Smart Cities' Electrification. Electronics (Switzerland), 2022, 11, 803.	3.1	1
3	Future Wireless Networking Experiments Escaping Simulations. Future Internet, 2022, 14, 120.	3.8	4
4	Analyzing the impact of feature selection on the accuracy of heart disease prediction. Healthcare Analytics, 2022, 2, 100060.	4.3	37
5	Spectrum-Entropy-Minimized Routing and Spectrum Allocation in IP over Mixed-Fixed/Flex-Grid Optical Networks. Photonics, 2022, 9, 428.	2.0	0
6	Routing, Core and Wavelength Allocation in Multi-Core-Fiber-Based Quantum-Key-Distribution-Enabled Optical Networks. IEEE Access, 2021, 9, 99842-99852.	4.2	5
7	Virtual Network Function Embedding under Nodal Outage Using Deep Q-Learning. Future Internet, 2021, 13, 82.	3.8	5
8	Towards a Blockchain Assisted Patient Owned System for Electronic Health Records. Electronics (Switzerland), 2021, 10, 580.	3.1	40
9	Auxiliary-Graph-Based Energy-Efficient Traffic Grooming in IP-Over-Fixed/Flex-Grid Optical Networks. Journal of Lightwave Technology, 2021, 39, 3011-3024.	4.6	17
10	Spectrum allocation scheme considering spectrum slicing in elastic optical networks. Journal of Optical Communications and Networking, 2021, 13, 169.	4.8	11
11	Multi-path-based quasi-real-time key provisioning in quantum-key-distribution enabled optical networks (QKD-ON). Optics Express, 2021, 29, 21225.	3.4	16
12	Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures. Electronics (Switzerland), 2021, 10, 2067.	3.1	0
13	Analyzing Impact of Time on Early Detection of Rainfall Event. , 2021, , .		2
14	Networked Twins and Twins of Networks: An Overview on the Relationship Between Digital Twins and 6G. IEEE Communications Standards Magazine, 2021, 5, 154-160.	4.9	39
15	On Adaptive Network Deployment for Visible Light Communications. , 2021, , .		0
16	Elastic optical network with spectrum slicing for fragmented bandwidth allocation. Optical Switching and Networking, 2020, 38, 100583.	2.0	17
17	Identifying Stroke Indicators Using Rough Sets. IEEE Access, 2020, 8, 210318-210327.	4.2	25

2

Ανιςμέκ Νας

#	Article	IF	CITATIONS
19	End-to-End Quantum Key Distribution (QKD) from Metro to Access Networks. , 2020, , .		5
20	Tree-topology-based quantum-key-relay strategy for secure multicast services. Journal of Optical Communications and Networking, 2020, 12, 120.	4.8	14
21	Key-Recycling Strategies in Quantum-Key-Distribution Networks. Applied Sciences (Switzerland), 2020, 10, 3734.	2.5	7
22	Blockchain for 5G and IoT: Opportunities and Challenges. , 2020, , .		15
23	Towards AI-enabled Microservice Architecture for Network Function Virtualization. , 2020, , .		9
24	Distributed subkey-relay-tree-based secure multicast scheme in quantum data center networks. Optical Engineering, 2020, 59, 1.	1.0	10
25	Auxiliary graph based routing, wavelength, and time-slot assignment in metro quantum optical networks with a novel node structure. Optics Express, 2020, 28, 5936.	3.4	14
26	Collaborative Routing in Partially-Trusted Relay based Quantum Key Distribution Optical Networks. , 2020, , .		5
27	Quantum-Key-Distribution (QKD) Networks Enabled by Software-Defined Networks (SDN). Applied Sciences (Switzerland), 2019, 9, 2081.	2.5	14
28	Resilient Quantum Key Distribution (QKD)-Integrated Optical Networks With Secret-Key Recovery Strategy. IEEE Access, 2019, 7, 60079-60090.	4.2	21
29	Protection Schemes for Key Service in Optical Networks Secured by Quantum Key Distribution (QKD). Journal of Optical Communications and Networking, 2019, 11, 67.	4.8	27
30	Automatic Configuration of OpenFlow in Wireless Mobile Ad hoc Networks. , 2019, , .		5
31	Fall Detection with Privacy as Standard. , 2019, , .		Ο
32	Non-Centralised and Non-GPS Navigation Mechanism using IoT sensors: challenges and trade-offs. , 2019, , .		1
33	An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Communications Surveys and Tutorials, 2019, 21, 1383-1408.	39.4	374
34	The Network As a Computer: A Framework for Distributed Computing Over IoT Mesh Networks. IEEE Internet of Things Journal, 2018, 5, 2107-2119.	8.7	35
35	Experimental evaluation of SAPC-R: an adaptive power control protocol for mobile sensors. , 2018, , .		0
36	A neural-network-based realization of in-network computation for the Internet of Things. , 2017, , .		13

Ανιςμέκ Νας

#	Article	IF	CITATIONS
37	A software radio LTE network testbed for video quality of experience experimentation. , 2017, , .		4
38	Integrating Wireless BBUs with Optical OFDM Flexible-Grid Transponders in a C-RAN Architecture. , 2017, , .		4
39	Exploiting Dual Homing in Access Networks to Improve Resiliency in Core Networks. Journal of Optical Communications and Networking, 2016, 8, 854.	4.8	2
40	Computing for rural empowerment: enabled by last-mile telecommunications. , 2016, 54, 102-109.		35
41	Nâ^¶1 Protection Design for Minimizing OLTs in Resilient Dual-Homed Long-Reach Passive Optical Network. Journal of Optical Communications and Networking, 2016, 8, 93.	4.8	19
42	On the dimensioning of survivable optical metro/core networks with dual-homed access. , 2015, , .		0
43	N:1 Protection Design for Minimising OLTs in Resilient Dual-Homed Long-Reach Passive Optical Network. , 2014, , .		5
44	Dual-Homing Based Protection for Enhanced Network Availability and Resource Efficiency. , 2014, , .		2
45	On the effect of channel spacing, launch power, and regenerator placement on the design of mixed-line-rate optical networks. Optical Switching and Networking, 2013, 10, 301-311.	2.0	11
46	Robust Design of Spectrum-Efficient Green Optical Backbone Networks. Journal of Lightwave Technology, 2013, 31, 1138-1144.	4.6	18
47	New concept in long-reach PON Planning: BER-aware wavelength allocation. Optical Switching and Networking, 2013, 10, 475-480.	2.0	1
48	Routing and Wavelength Assignment in WDM Networks with Mixed Line Rates. Optical Networks Series, 2013, , 53-77.	1.1	1
49	Energy-Efficient and Cost-Efficient Capacity Upgrade in Mixed-Line-Rate Optical Networks. Journal of Optical Communications and Networking, 2012, 4, 1018.	4.8	22
50	Optimal placement of combined 2R/3R regenerators in WDM networks. , 2012, , .		2
51	Dimensioning optical WDM backbone networks with mixed line rates. , 2012, , .		1
52	Mixed-line-rate optical network design with wavebanding. Optical Switching and Networking, 2012, 9, 286-296.	2.0	5
53	On the Design of Energy-Efficient Mixed-Line-Rate (MLR) Optical Networks. Journal of Lightwave Technology, 2012, 30, 130-139.	4.6	73
54	Energy-Efficient Capacity Upgrade in Optical Networks with Mixed Line Rates. , 2012, , .		0

Ανιshek Nag

#	Article	IF	CITATIONS
55	On Spectrum-Efficient Green Optical Backbone Networks. , 2011, , .		7
56	BER-aware wavelength allocation schemes for long-reach PON employing AWG-based remote node. , 2011, , .		0
57	Mixed-Line-Rate (MLR) Optical Network Design Considering Heterogeneous Fiber Dispersion Maps. , 2011, , .		3
58	Optical Network Design With Mixed Line Rates and Multiple Modulation Formats. Journal of Lightwave Technology, 2010, 28, 466-475.	4.6	230
59	Telecom Mesh Network Upgrade to Manage Traffic Growth. Journal of Optical Communications and Networking, 2010, 2, 256.	4.8	9
60	Mixed-line-rate (MLR) optical network design with wavebanding. , 2010, , .		1
61	Power Management in Mixed Line Rate Optical Network. , 2010, , .		10
62	Optical network design with mixed line rates. Optical Switching and Networking, 2009, 6, 227-234.	2.0	48
63	Impact of channel spacing on the design of a mixed-line-rate optical network. , 2009, , .		6
64	Transparent vs. Translucent Optical Network Design with Mixed Line Rates. , 2009, , .		12
65	Optical Network Design with Mixed Line Rates and Multiple Modulation Formats. , 2009, , .		2
66	Optical Network Design with Mixed Line Rates and Multiple Modulation Formats. , 2009, , .		0
67	Transparent optical network design with mixed line rates. , 2008, , .		22