Egor P Tchesnokov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993905/publications.pdf

Version: 2024-02-01

24 papers 2,776 citations

14 h-index

623734

677142 22 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

4397 citing authors

#	Article	IF	CITATIONS
1	Sandacrabins – Structurally Unique Antiviral RNA Polymerase Inhibitors from a Rare Myxobacterium**. Chemistry - A European Journal, 2022, 28, e202104484.	3.3	10
2	Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir. Journal of Biological Chemistry, 2022, 298, 101529.	3.4	25
3	Efficient Incorporation and Templateâ€Dependent Polymerase Inhibition are Major Determinants for the Broadâ€5pectrum Antiviral Activity of Remdesivir. FASEB Journal, 2022, 36, .	0.5	O
4	Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Science Translational Medicine, 2022, 14, eabo0718.	12.4	108
5	Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K–specific inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
6	The Nucleoside/Nucleotide Analogs Tenofovir and Emtricitabine Are Inactive against SARS-CoV-2. Molecules, 2022, 27, 4212.	3.8	9
7	Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. Journal of Biological Chemistry, 2021, 297, 100770.	3.4	200
8	The active form of the influenza cap-snatching endonuclease inhibitor baloxavir marboxil is a tight binding inhibitor. Journal of Biological Chemistry, 2021, 296, 100486.	3.4	12
9	Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. The Enzymes, 2021, 49, 315-354.	1.7	9
10	Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26946-26954.	7.1	54
11	Application of Molecular Dynamics Simulations to the Design of Nucleotide Inhibitors Binding to Norovirus Polymerase. Journal of Chemical Information and Modeling, 2020, 60, 6566-6578.	5.4	4
12	Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. Journal of Biological Chemistry, 2020, 295, 16156-16165.	3.4	120
13	Independent inhibition of the polymerase and deubiquitinase activities of the Crimean-Congo Hemorrhagic Fever Virus full-length L-protein. PLoS Neglected Tropical Diseases, 2020, 14, e0008283.	3.0	12
14	Independent Inhibition of the Polymerase and Deubiquitinase Activities of the Crimean–Congo Hemorrhagic Fever Virus Full-Length L-Protein. Proceedings (mdpi), 2020, 50, .	0.2	0
15	The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 2020, 295, 4773-4779.	3.4	659
16	Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 2020, 295, 6785-6797.	3.4	752
17	Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 2019, 11, 326.	3.3	478
18	Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Scientific Reports, 2018, 8, 3970.	3.3	45

#	Article	IF	CITATION
19	Derivatives of Mesoxalic Acid Block Translocation of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2015, 290, 1474-1484.	3.4	14
20	Mechanisms Associated with HIV-1 Resistance to Acyclovir by the V75I Mutation in Reverse Transcriptase. Journal of Biological Chemistry, 2009, 284, 21496-21504.	3.4	24
21	Engineering of a Chimeric RB69 DNA Polymerase Sensitive to Drugs Targeting the Cytomegalovirus Enzyme. Journal of Biological Chemistry, 2009, 284, 26439-26446.	3.4	11
22	Acyclovir Is Activated into a HIV-1 Reverse Transcriptase Inhibitor in Herpesvirus-Infected Human Tissues. Cell Host and Microbe, 2008, 4, 260-270.	11.0	119
23	Delayed Chain Termination Protects the Anti-hepatitis B Virus Drug Entecavir from Excision by HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2008, 283, 34218-34228.	3.4	63
24	Role of Helix P of the Human Cytomegalovirus DNA Polymerase in Resistance and Hypersusceptibility to the Antiviral Drug Foscarnet. Journal of Virology, 2006, 80, 1440-1450.	3.4	28