
Rachel Schiff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7993031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon Signaling in Estrogen Receptor–positive Breast Cancer: A Revitalized Topic. Endocrinology, 2022, 163, .	2.8	16
2	NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Scientific Reports, 2022, 12, 1972.	3.3	7
3	Abstract PD1-05: Targeting the FRA1-dependent transcriptional nexus in high FOXA1-driven endocrine-resistant and metastatic breast cancer. Cancer Research, 2022, 82, PD1-05-PD1-05.	0.9	0
4	Abstract PD8-06: Acquired resistance to tucatinib is associated with EGFR amplification in HER2+ breast cancer (BC) models and can be overcome by a more complete blockade of HER receptor layer. Cancer Research, 2022, 82, PD8-06-PD8-06.	0.9	1
5	Abstract P4-01-01: Resistance to next generation tyrosine kinase inhibitors (TKIs) in HER2-positive breast cancer (BC): Role of <i>HER</i> and <i>PIK3CA</i> mutations and development of new treatment strategies and study models. Cancer Research, 2022, 82, P4-01-01-P4-01-01.	0.9	1
6	Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers, 2022, 14, 2380.	3.7	4
7	Elacestrant and the Promise of Oral SERDs. Journal of Clinical Oncology, 2022, 40, 3227-3229.	1.6	10
8	Effect of mevalonate pathway inhibitors on outcomes of patients (pts) with HER2-positive early breast cancer (BC) in the ALTTO trial Journal of Clinical Oncology, 2022, 40, 522-522.	1.6	0
9	Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clinical Cancer Research, 2021, 27, 2648-2662.	7.0	4
10	Activation of the IFN Signaling Pathway is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clinical Cancer Research, 2021, 27, 4870-4882.	7.0	49
11	Endocrine-Based Treatments in Clinically-Relevant Subgroups of Hormone Receptor-Positive/HER2-Negative Metastatic Breast Cancer: Systematic Review and Meta-Analysis. Cancers, 2021, 13, 1458.	3.7	17
12	The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Developmental Cell, 2021, 56, 1100-1117.e9.	7.0	63
13	A novel role of ADGRF1 (GPR110) in promoting cellular quiescence and chemoresistance in human epidermal growth factor receptor 2â€positive breast cancer. FASEB Journal, 2021, 35, .	0.5	2
14	Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models. Npj Breast Cancer, 2021, 7, 63.	5.2	4
15	A novel role of ADGRF1 (GPR110) in promoting cellular quiescence and chemoresistance in human epidermal growth factor receptor 2â€positive breast cancer. FASEB Journal, 2021, 35, e21719.	0.5	13
16	Abstract 930: Production of functionally active recombinant FOXA1: The first step towards targeted drug discovery. , 2021, , .		0
17	Abstract 1077: Acquired neratinib resistance is associated with acquisition ofHER2andPIK3CAmutations and can be overcome using potent drug combinations in HER2-positive breast cancer models. , 2021, , .		1
18	Restoring order at the cell cycle border: Co-targeting CDK4/6 and CDK2. Cancer Cell, 2021, 39, 1302-1305.	16.8	6

#	Article	IF	CITATIONS
19	Management of hormone receptor–positive, human epidermal growth factor 2–negative metastatic breast cancer. Breast Cancer Research and Treatment, 2021, 190, 189-201.	2.5	10
20	HER2-Enriched Subtype and ERBB2 Expression in HER2-Positive Breast Cancer Treated with Dual HER2 Blockade. Journal of the National Cancer Institute, 2020, 112, 46-54.	6.3	97
21	In vivo longitudinal imaging of RNA interferenceâ€induced endocrine therapy resistance in breast cancer. Journal of Biophotonics, 2020, 13, e201900180.	2.3	1
22	Evaluation of the Predictive Role of Tumor Immune Infiltrate in Patients with HER2-Positive Breast Cancer Treated with Neoadjuvant Anti-HER2 Therapy without Chemotherapy. Clinical Cancer Research, 2020, 26, 738-745.	7.0	31
23	Towards personalized treatment for early stage HER2-positive breast cancer. Nature Reviews Clinical Oncology, 2020, 17, 233-250.	27.6	166
24	TBCRC023: A Randomized Phase II Neoadjuvant Trial of Lapatinib Plus Trastuzumab Without Chemotherapy for 12 versus 24 Weeks in Patients with HER2-Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 821-827.	7.0	40
25	The 3D genomic landscape of differential response to EGFR/HER2 inhibition in endocrine-resistant breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194631.	1.9	10
26	Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Research, 2020, 22, 84.	5.0	18
27	Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nature Cell Biology, 2020, 22, 701-715.	10.3	84
28	Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Science Advances, 2020, 6, eabb2210.	10.3	46
29	Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research, 2020, 48, 1800-1810.	14.5	15
30	HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis. Cancer Treatment Reviews, 2020, 84, 101965.	7.7	92
31	Microscaled proteogenomic methods for precision oncology. Nature Communications, 2020, 11, 532.	12.8	78
32	A multiparameter classifier to predict response to lapatinib plus trastuzumab (LT) without chemotherapy in HER2+ breast cancer (BC) Journal of Clinical Oncology, 2020, 38, 1011-1011.	1.6	4
33	ADCRF1 signaling pathways in Breast Cancer. FASEB Journal, 2020, 34, 1-1.	0.5	0
34	DE-ESCALATING TREATMENT FOR HER2-POSITIVE EARLY BREAST CANCER. Transactions of the American Clinical and Climatological Association, 2020, 131, 119-126.	0.5	0
35	AhR ligand aminoflavone suppresses α6â€integrin–Src–Akt signaling to attenuate tamoxifen resistance in breast cancer cells. Journal of Cellular Physiology, 2019, 234, 108-121.	4.1	31
36	The FBXW2–MSX2–SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20528-20538.	7.1	63

#	Article	IF	CITATIONS
37	A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. Journal of Clinical Medicine, 2019, 8, 1772.	2.4	36
38	Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Molecular Cancer Research, 2019, 17, 2318-2330.	3.4	41
39	Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer, 2019, 19, 220.	2.6	19
40	Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance. Nature Communications, 2019, 10, 1522.	12.8	66
41	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	7.1	103
42	The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. British Journal of Cancer, 2019, 120, 331-339.	6.4	48
43	Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize. Cancer Research, 2018, 78, 845-852.	0.9	169
44	GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Research and Treatment, 2018, 170, 279-292.	2.5	22
45	Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nature Medicine, 2018, 24, 505-511.	30.7	47
46	Trastuzumab-Resistant HER2+ Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition. Molecular Cancer Therapeutics, 2018, 17, 921-930.	4.1	11
47	Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2–ERα–GREB1 Transcriptional Axis. Cancer Research, 2018, 78, 671-684.	0.9	80
48	Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Research and Treatment, 2018, 167, 731-740.	2.5	71
49	Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. Npj Breast Cancer, 2018, 4, 38.	5.2	78
50	Is ctDNA the Road Map to the Landscape of the Clonal Mutational Evolution in Drug Resistance? Lessons from the PALOMA-3 Study and Implications for Precision Medicine. Cancer Discovery, 2018, 8, 1352-1354.	9.4	7
51	PAM50 HER2-enriched/ERBB2-high (HER2-E/ERBB2H) biomarker to predict response and survival following lapatinib (L) alone or in combination with trastuzumab (T) in HER2+ T-refractory metastatic breast cancer (BC): A correlative analysis of the EGF104900 phase III trial Journal of Clinical Oncology, 2018, 36, 1025-1025.	1.6	3
52	HER2-enriched subtype and ERBB2 mRNA as predictors of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer: A combined analysis of TBCRC006/023 and PAMELA trials Journal of Clinical Oncology, 2018, 36, 509-509.	1.6	10
53	Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4482-E4491.	7.1	83
54	HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clinical Cancer Research, 2017, 23, 5123-5134.	7.0	85

#	Article	IF	CITATIONS
55	The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Current Oncology Reports, 2017, 19, 35.	4.0	80
56	PTK6 regulates growth and survival of endocrine therapy-resistant ER+ breast cancer cells. Npj Breast Cancer, 2017, 3, 45.	5.2	21
57	De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast, 2017, 34, S19-S26.	2.2	46
58	Spatial Proximity to Fibroblasts Impacts Molecular Features and Therapeutic Sensitivity of Breast Cancer Cells Influencing Clinical Outcomes. Cancer Research, 2016, 76, 6495-6506.	0.9	105
59	FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6600-E6609.	7.1	119
60	Amplification of <i>TLK2</i> Induces Genomic Instability via Impairing the G2–M Checkpoint. Molecular Cancer Research, 2016, 14, 920-927.	3.4	21
61	Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nature Communications, 2016, 7, 12991.	12.8	45
62	Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Molecular Cancer Research, 2016, 14, 470-481.	3.4	39
63	Evaluation of tumor immune infiltrate as a determinant of response to neo-adjuvant lapatinib and trastuzumab (LT) in HER2-positive (+) breast cancer (BC) Journal of Clinical Oncology, 2016, 34, 608-608.	1.6	1
64	Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. International Journal of Nanomedicine, 2015, 10, 125.	6.7	22
65	Resistance to Anti-HER2 Therapies in Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e157-e164.	3.8	24
66	Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clinical Cancer Research, 2015, 21, 3995-4003.	7.0	82
67	Receptor tyrosine kinase ERBB4 mediates acquired resistance to ERBB2 inhibitors in breast cancer cells. Cell Cycle, 2015, 14, 648-655.	2.6	66
68	Targeting HER2 for the Treatment of Breast Cancer. Annual Review of Medicine, 2015, 66, 111-128.	12.2	213
69	Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Research, 2015, 17, 3.	5.0	48
70	ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature Reviews Clinical Oncology, 2015, 12, 573-583.	27.6	458
71	Int6 reduction activates stromal fibroblasts to enhance transforming activity in breast epithelial cells. Cell and Bioscience, 2015, 5, 10.	4.8	9
72	The changing role of ER in endocrine resistance. Breast, 2015, 24, S60-S66.	2.2	97

#	Article	IF	CITATIONS
73	Basal Protein Expression Is Associated With Worse Outcome and Trastuzamab Resistance in HER2+ Invasive Breast Cancer. Clinical Breast Cancer, 2015, 15, 448-457.e2.	2.4	11
74	Crosstalk between PARP-1 and NF-κB signaling pathways as a potential determinant of PARPi sensitivity in trastuzumab resistant HER2+ breast cancer cell lines Journal of Clinical Oncology, 2015, 33, 606-606.	1.6	0
75	The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor. Cell Reports, 2014, 9, 1318-1332.	6.4	24
76	Therapeutic potential of the dual EGFR/HER2Âinhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Research and Treatment, 2014, 144, 263-272.	2.5	49
77	Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance. Neoplasia, 2014, 16, 390-402.	5.3	66
78	Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nature Communications, 2014, 5, 4577.	12.8	112
79	Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. Journal of Controlled Release, 2014, 191, 90-97.	9.9	79
80	An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Research, 2014, 24, 809-819.	12.0	155
81	Development of Acneiform Rash Does Not Predict Response to Lapatinib Treatment in Patients with Breast Cancer. Pharmacotherapy, 2013, 33, 1126-1129.	2.6	5
82	Bidirectional Crosstalk between the Estrogen Receptor and Human Epidermal Growth Factor Receptor 2 Signaling Pathways in Breast Cancer: Molecular Basis and Clinical Implications. Breast Care, 2013, 8, 256-262.	1.4	117
83	Multicenter Phase II Study of Neoadjuvant Lapatinib and Trastuzumab With Hormonal Therapy and Without Chemotherapy in Patients With Human Epidermal Growth Factor Receptor 2–Overexpressing Breast Cancer: TBCRC 006. Journal of Clinical Oncology, 2013, 31, 1726-1731.	1.6	238
84	A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-Derived Human Breast Cancer Xenograft Models. Cancer Research, 2013, 73, 4885-4897.	0.9	394
85	Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Research and Treatment, 2012, 134, 583-593.	2.5	31
86	β1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Research, 2011, 13, R84.	5.0	147
87	Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers - role of estrogen receptor and HER2 reactivation. Breast Cancer Research, 2011, 13, R121.	5.0	219
88	Mechanisms of Endocrine Resistance in Breast Cancer. Annual Review of Medicine, 2011, 62, 233-247.	12.2	963
89	Reduced Dose and Intermittent Treatment with Lapatinib and Trastuzumab for Potent Blockade of the HER Pathway in HER2/neu-Overexpressing Breast Tumor Xenografts. Clinical Cancer Research, 2011, 17, 1351-1361.	7.0	76
90	HER2: biology, detection, and clinical implications. Archives of Pathology and Laboratory Medicine, 2011, 135, 55-62.	2.5	189

#	Article	IF	CITATIONS
91	HER2: Biology, Detection, and Clinical Implications. Archives of Pathology and Laboratory Medicine, 2011, 135, 55-62.	2.5	404
92	Development of Resistance to Targeted Therapies Transforms the Clinically Associated Molecular Profile Subtype of Breast Tumor Xenografts. Cancer Research, 2008, 68, 7493-7501.	0.9	120
93	Treatment of Human Epidermal Growth Factor Receptor 2-Overexpressing Breast Cancer Xenografts With Multiagent HER-Targeted Therapy. Journal of the National Cancer Institute, 2007, 99, 694-705.	6.3	176
94	Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemotherapy and Pharmacology, 2005, 56, 10-20.	2.3	170
95	Molecular Changes in Tamoxifen-Resistant Breast Cancer: Relationship Between Estrogen Receptor, HER-2, and p38 Mitogen-Activated Protein Kinase. Journal of Clinical Oncology, 2005, 23, 2469-2476.	1.6	436
96	Cross-Talk between Estrogen Receptor and Growth Factor Pathways as a Molecular Target for Overcoming Endocrine Resistance. Clinical Cancer Research, 2004, 10, 331s-336s.	7.0	397
97	Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs). Breast Cancer Research, 2003, 5, 228-31.	5.0	18
98	Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clinical Cancer Research, 2003, 9, 447S-54S.	7.0	182