
Peng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7992483/publications.pdf Version: 2024-02-01

DENC ZHANC

#	Article	IF	CITATIONS
1	Cure kinetics and morphology of natural rubber reinforced by the <i>in situ</i> polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 2010, 115, 99-106.	2.6	115
2	Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement. Applied Physics Letters, 2014, 104, 243107.	3.3	103
3	Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures. ACS Applied Materials & Interfaces, 2015, 7, 12470-12477.	8.0	63
4	Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 2010, 59, 1397-1402.	3.1	60
5	Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. Journal of Power Sources, 2019, 409, 148-158.	7.8	59
6	Remarkable reinforcement of natural rubber by deformation-induced crystallization in the presence of organophilic montmorillonite. Acta Materialia, 2009, 57, 5053-5060.	7.9	48
7	Ordered Mesoporous TiO ₂ Gyroids: Effects of Pore Architecture and Nbâ€Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials, 2018, 8, 1802566.	19.5	46
8	Effects of Cationic Species in Salts on the Electrical Conductivity of Doped PEDOT:PSS Films. ACS Applied Polymer Materials, 2021, 3, 98-103.	4.4	40
9	Cavitation in strained polyethylene/aluminium oxide nanocomposites. European Polymer Journal, 2017, 87, 255-265.	5.4	37
10	Self-Assembled Block Copolymer Electrolytes: Enabling Superior Ambient Cationic Conductivity and Electrochemical Stability. Chemistry of Materials, 2019, 31, 277-285.	6.7	33
11	An Ambient Temperature Electrolyte with Superior Lithium Ion Conductivity based on a Selfâ€Assembled Block Copolymer. Chemistry - A European Journal, 2018, 24, 8061-8065.	3.3	32
12	Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes. ACS Applied Energy Materials, 2019, 2, 3773-3779.	5.1	32
13	Manipulating the Assembly of Spray-Deposited Nanocolloids: <i>In Situ</i> Study and Monolayer Film Preparation. Langmuir, 2016, 32, 4251-4258.	3.5	30
14	Composition–Morphology Correlation in PTB7-Th/PC ₇₁ BM Blend Films for Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 3125-3135.	8.0	30
15	Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length. Physical Chemistry Chemical Physics, 2017, 19, 27251-27258.	2.8	25
16	Layer-by-Layer Spray-Coating of Cellulose Nanofibrils and Silver Nanoparticles for Hydrophilic Interfaces. ACS Applied Nano Materials, 2021, 4, 503-513.	5.0	24
17	Structures and alignment of anisotropic liquid crystal particles in a liquid crystal cell. RSC Advances, 2014, 4, 40617-40625.	3.6	22
18	Deciphering the superior thermoelectric property of post-treatment-free PEDOT:PSS/IL hybrid by X-ray and neutron scattering characterization. Npj Flexible Electronics, 2022, 6, .	10.7	19

Peng Zhang

#	Article	IF	CITATIONS
19	Preparation of long-range ordered nanostructures in semicrystalline diblock copolymer thin films using micromolding. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1188-1198.	3.8	17
20	Following the Island Growth in Real Time: Ag Nanocluster Layer on Alq3 Thin Film. Journal of Physical Chemistry C, 2015, 119, 4406-4413.	3.1	16
21	Self-assembly of block copolymers via micellar intermediate states into vesicles on time scales from milliseconds to days. Polymer, 2016, 107, 434-444.	3.8	16
22	Strainâ€induced crystallization behavior of polychloroprene rubber. Journal of Applied Polymer Science, 2011, 121, 37-42.	2.6	15
23	Study on the selfâ€crosslinking behavior based on polychloroprene rubber and epoxidized natural rubber. Journal of Applied Polymer Science, 2012, 125, 1084-1090.	2.6	15
24	Anisotropic nanoparticles as templates for the crystalline structure of an injection-molded isotactic polypropylene/TiO 2 nanocomposite. Polymer, 2017, 130, 161-169.	3.8	15
25	Strainâ€induced crystallization behavior of natural rubber and transâ€1,4â€polyisoprene crosslinked blends. Journal of Applied Polymer Science, 2011, 120, 1346-1354.	2.6	13
26	Long-Range Ordered Crystallization Structure in the Micromolded Diblock Copolymer Thin Film. ACS Macro Letters, 2012, 1, 1007-1011.	4.8	13
27	Surface Etching of Polymeric Semiconductor Films Improves Environmental Stability of Transistors. Chemistry of Materials, 2021, 33, 2673-2682.	6.7	13
28	<i>In Situ</i> Study of the Breakout Crystallization in the Poly(butadiene)- <i>block</i> -Poly(Îμ-caprolactone) Thin Film. Langmuir, 2012, 28, 6419-6427.	3.5	12
29	Relationship between the material properties and fatigue crackâ€growth characteristics of natural rubber filled with different carbon blacks. Journal of Applied Polymer Science, 2010, 117, 3441-3447.	2.6	11
30	Direct Observation of the Relief Structure Formation in the Nearly Symmetric Poly(styrene)- <i>block</i> -poly(ε-caprolactone) Diblock Copolymer Thin Film. Macromolecules, 2012, 45, 9139-9146.	4.8	11
31	Drying of electrically conductive hybrid polymer–gold nanorods studied with in situ microbeam GISAXS. Nanoscale, 2019, 11, 6538-6543.	5.6	11
32	Scalable Manufacturing of Solid Polymer Electrolytes with Superior Room-Temperature Ionic Conductivity. ACS Applied Materials & Interfaces, 2022, 14, 32994-33003.	8.0	11
33	Structural evolution during uniaxial deformation of natural rubber reinforced with nanoâ€alumina. Polymers for Advanced Technologies, 2011, 22, 2001-2008.	3.2	10
34	The influence of montmorillonite on the antiâ€reversion in the rubber–clay composites. Journal of Applied Polymer Science, 2010, 118, 306-311.	2.6	9
35	Influence of Water on Tribolayer Growth When Lubricating Steel with a Fluorinated Phosphonium Dicyanamide Ionic Liquid. Lubricants, 2019, 7, 27.	2.9	9
36	Improved mechanical properties and special reinforcement mechanism of natural rubber reinforced by <i>in situ</i> polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 2010, 116, 920-928.	2.6	7

PENG ZHANG

#	Article	IF	CITATIONS
37	Natural rubber with low heat generation achieved by the inclusion of boron carbide. Journal of Applied Polymer Science, 2010, 118, 2050-2055.	2.6	7
38	Determination of the Surface Facets of Gold Nanorods in Wetâ€Coated Thin Films with Grazingâ€Incidence Wide Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2019, 36, 1900323.	2.3	7
39	Aging of low-temperature derived highly flexible nanostructured TiO ₂ /P3HT hybrid films during bending. Journal of Materials Chemistry A, 2019, 7, 10805-10814.	10.3	7
40	An effect of OMMT on the antiâ€reversion in NR/CR blend system. Journal of Applied Polymer Science, 2009, 111, 673-679.	2.6	6
41	Deciphering the role of tetrahydrofuran residue in the poly(ethylene oxide)/LiTFSI hybrid used for secondary battery electrolyte. Giant, 2021, 6, 100056.	5.1	6
42	Ultrathin Homogenous AuNP Monolayers as Tunable Functional Substrates for Surface-Assisted Laser Desorption/Ionization of Small Biomolecules. Journal of the American Society for Mass Spectrometry, 2020, 31, 47-57.	2.8	4
43	Gold Nanoprobes Exploring the Ice Structure in the Aqueous Dispersion of Poly(Ethylene) Tj ETQq1 1 0.784314 r	gBT /Overl $_{3.5}^{3.5}$	locန 10 Tf 50
44	Crack initiation of natural rubber under high temperature fatigue loading. Journal of Applied Polymer Science, 2012, 124, 4274-4280.	2.6	3
45	A simple MALDI target plate with channel design to improve detection sensitivity and reproducibility for quantitative analysis of biomolecules. Journal of Mass Spectrometry, 2019, 54, 878-884.	1.6	2