
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7990800/publications.pdf Version: 2024-02-01

ΙΝΟΟΙΕΚΔ1/ΗΝ

#	Article	IF	CITATIONS
1	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	4.5	2,522
2	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
3	No saturation in the accumulation of alien species worldwide. Nature Communications, 2017, 8, 14435.	12.8	1,543
4	The LEDA Traitbase: a database of lifeâ€history traits of the Northwest European flora. Journal of Ecology, 2008, 96, 1266-1274.	4.0	1,306
5	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	10.4	1,224
6	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
7	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
8	A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133330.	2.6	985
9	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	10.4	928
10	How well do we understand the impacts of alien species on ecosystem services? A panâ€European, crossâ€ŧaxa assessment. Frontiers in Ecology and the Environment, 2010, 8, 135-144.	4.0	870
11	Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology, 2008, 45, 403-414.	4.0	784
12	A Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts. PLoS Biology, 2014, 12, e1001850.	5.6	648
13	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
14	Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12157-12162.	7.1	470
15	Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 203-207.	7.1	442
16	Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2264-E2273.	7.1	416
17	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
18	Projecting the future distribution of European potential natural vegetation zones with a generalized, tree speciesâ€based dynamic vegetation model. Global Ecology and Biogeography, 2012, 21, 50-63.	5.8	372

#	Article	IF	CITATIONS
19	CLIMATE CHANGE CAN CAUSE SPATIAL MISMATCH OF TROPHICALLY INTERACTING SPECIES. Ecology, 2008, 89, 3472-3479.	3.2	356
20	Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 2012, 39, 2163-2178.	3.0	340
21	Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 2021, 27, 970-982.	9.5	327
22	Defining the Impact of Nonâ€Native Species. Conservation Biology, 2014, 28, 1188-1194.	4.7	308
23	Urbanization and homogenization – Comparing the floras of urban and rural areas in Germany. Biological Conservation, 2006, 127, 292-300.	4.1	305
24	Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21721-21725.	7.1	305
25	Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience, 2015, 65, 55-63.	4.9	301
26	Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe, 2011, 23, .	11.0	295
27	Contrasting changes in taxonomic, phylogenetic and functional diversity during a longâ€ŧerm succession: insights into assembly processes. Journal of Ecology, 2013, 101, 857-866.	4.0	282
28	BiolFlor - a new plant-trait database as a tool for plant invasion ecology. Diversity and Distributions, 2004, 10, 363-365.	4.1	262
29	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	10.4	259
30	The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 2018, 93, 1421-1437.	10.4	251
31	The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions, 2009, 15, 891-903.	4.1	246
32	Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters, 2008, 11, 1054-1064.	6.4	230
33	Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Global Ecology and Biogeography, 2003, 12, 299-311.	5.8	203
34	Crossing Frontiers in Tackling Pathways of Biological Invasions. BioScience, 2015, 65, 769-782.	4.9	202
35	Non-natives: 141 scientists object. Nature, 2011, 475, 36-36.	27.8	197
36	Climatic Risk Atlas of European Butterflies. BioRisk, 0, 1, 1-712.	0.2	196

#	Article	IF	CITATIONS
37	Plant richness patterns in agricultural and urban landscapes in Central Germany—spatial gradients of species richness. Landscape and Urban Planning, 2006, 75, 97-110.	7.5	190
38	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
39	Framework and guidelines for implementing the proposed <scp>IUCN</scp> Environmental Impact Classification for Alien Taxa (<scp>EICAT</scp>). Diversity and Distributions, 2015, 21, 1360-1363.	4.1	184
40	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	12.8	180
41	Integrating ecosystem services and disservices: insights from plant invasions. Ecosystem Services, 2017, 23, 94-107.	5.4	179
42	Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 69-81.	2.7	170
43	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	3.2	166
44	GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 2018, 5, 180022.	5.3	164
45	Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.	0.7	160
46	Trait interactions help explain plant invasion success in the German flora. Journal of Ecology, 2008, 96, 860-868.	4.0	156
47	Which Taxa Are Alien? Criteria, Applications, and Uncertainties. BioScience, 2018, 68, 496-509.	4.9	153
48	Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 2012, 21, 88-99.	5.8	152
49	Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology, 2013, 94, 1389-1399.	3.2	150
50	A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Global Ecology and Biogeography, 2020, 29, 978-991.	5.8	150
51	The evolution of critical thermal limits of life on Earth. Nature Communications, 2021, 12, 1198.	12.8	149
52	Drivers of future alien species impacts: An expertâ€based assessment. Global Change Biology, 2020, 26, 4880-4893.	9.5	145
53	The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 2018, 613-614, 1376-1384.	8.0	143
54	Climate and land use change impacts on plant distributions in Germany. Biology Letters, 2008, 4, 564-567.	2.3	138

#	Article	IF	CITATIONS
55	Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38, 1305-1317.	3.0	137
56	Changes in the functional composition of a Central European urban flora over three centuries. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 235-244.	2.7	134
57	A comparative test of phylogenetic diversity indices. Oecologia, 2008, 157, 485-495.	2.0	121
58	The progress of interdisciplinarity in invasion science. Ambio, 2017, 46, 428-442.	5.5	120
59	Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications, 2020, 11, 3486.	12.8	115
60	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	4.0	114
61	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	4.9	113
62	A conceptual framework for prioritization of invasiveÂalien species for management accordingÂtoÂtheir impact. NeoBiota, 0, 15, 69-100.	1.0	112
63	Plant functional group composition and largeâ€scale species richness in European agricultural landscapes. Journal of Vegetation Science, 2008, 19, 3-14.	2.2	111
64	Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. Journal of Applied Ecology, 2018, 55, 92-98.	4.0	108
65	The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Diversity and Distributions, 2009, 15, 158-166.	4.1	107
66	Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. Journal of Biogeography, 2012, 39, 1473-1486.	3.0	104
67	Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions, 2006, 13, 061117052025001-???.	4.1	103
68	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	7.1	102
69	Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecological Modelling, 2007, 207, 159-170.	2.5	97
70	Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecology and Biogeography, 2012, 21, 545-555.	5.8	96
71	Beta diversity of urban floras among <scp>E</scp> uropean and nonâ€ <scp>E</scp> uropean cities. Global Ecology and Biogeography, 2014, 23, 769-779.	5.8	90
72	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	5.8	89

#	Article	IF	CITATIONS
73	Do protected areas in urban and rural landscapes differ in species diversity?. Biodiversity and Conservation, 2008, 17, 1595-1612.	2.6	86
74	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	2.8	86
75	Why do alien plant species that reproduce in natural habitats occur more frequently?. Diversity and Distributions, 2004, 10, 417-425.	4.1	84
76	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 2017, 26, 690-699.	5.8	84
77	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	5.4	83
78	Cross-realm assessment of climate change impacts on species' abundance trends. Nature Ecology and Evolution, 2017, 1, 67.	7.8	83
79	Species richness of herbivores on exotic host plants increases with time since introduction of the host. Diversity and Distributions, 2008, 14, 905-912.	4.1	82
80	Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 2012, 35, 356-363.	4.5	78
81	Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98, 92-102.	3.2	77
82	Correlates of naturalization and occupancy of introduced ornamentals in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 241-250.	2.7	73
83	Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landscape and Urban Planning, 2010, 97, 283-295.	7.5	72
84	Less than eight (and a half) misconceptions of spatial analysis. Journal of Biogeography, 2012, 39, 995-998.	3.0	72
85	Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 2018, 41, 1910-1919.	4.5	71
86	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	4.1	70
87	How species traits and affinity to urban land use control largeâ€scale species frequency. Diversity and Distributions, 2009, 15, 533-546.	4.1	66
88	Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 2015, 24, 786-794.	5.8	66
89	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66
90	Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytologist, 2006, 172, 127-139.	7.3	65

#	Article	IF	CITATIONS
91	The comparative analysis of historical alien introductions. Biological Invasions, 2008, 10, 1119-1129.	2.4	62
92	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	6.8	62
93	Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Global Ecology and Biogeography, 2016, 25, 1500-1509.	5.8	60
94	The effects of soil eutrophication propagate to higher trophic levels. Global Ecology and Biogeography, 2017, 26, 18-30.	5.8	60
95	Geographical patterns in prediction errors of species distribution models. Global Ecology and Biogeography, 2011, 20, 779-788.	5.8	58
96	Origin matters: widely distributed native and nonâ€native species benefit from different functional traits. Ecology Letters, 2012, 15, 696-703.	6.4	58
97	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
98	Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 2012, 21, 5-18.	5.8	57
99	Delineating probabilistic species pools in ecology and biogeography. Global Ecology and Biogeography, 2016, 25, 489-501.	5.8	57
100	Semiâ€natural habitats mitigate the effects of temperature rise on wild bees. Journal of Applied Ecology, 2017, 54, 527-536.	4.0	56
101	Linking traits of invasive plants with ecosystem services and disservices. Ecosystem Services, 2020, 42, 101072.	5.4	56
102	The need for an integrated biodiversity policy support process – Building the European contribution to a global Biodiversity Observation Network (EU BON). Nature Conservation, 0, 6, 49-65.	0.0	54
103	Combining spatial and phylogenetic eigenvector filtering in trait analysis. Global Ecology and Biogeography, 2009, 18, 745-758.	5.8	53
104	The role of nonâ€native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Global Ecology and Biogeography, 2010, 19, 332-342.	5.8	52
105	Predictive performance of plant species distribution models depends on species traits. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 219-225.	2.7	52
106	On the biogeography of seed mass in Germany – distribution patterns and environmental correlates. Ecography, 2008, 31, 457-468.	4.5	50
107	The neglected importance of floral traits in traitâ€based plant community assembly. Journal of Vegetation Science, 2020, 31, 529-539.	2.2	49
108	Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 2012, 39, 2179-2190.	3.0	48

#	Article	IF	CITATIONS
109	Modelling biome shifts and tree cover change for 2050 in West Africa. Journal of Biogeography, 2011, 38, 2248-2258.	3.0	47
110	Agricultural landscapes and ecosystem services in South-East Asia—the LEGATO-Project. Basic and Applied Ecology, 2015, 16, 661-664.	2.7	46
111	Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: The role of local adaptation and the importance of different life-cycle stages. PLoS ONE, 2017, 12, e0187708.	2.5	45
112	A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. Biological Conservation, 2015, 187, 41-50.	4.1	44
113	Urbanization Effects on Biodiversity Revealed by a Two-Scale Analysis of Species Functional Uniqueness vs. Redundancy. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	44
114	Alien plants in Chile: inferring invasion periods from herbarium records. Biological Invasions, 2008, 10, 649-657.	2.4	43
115	Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits. Biological Invasions, 2014, 16, 577-589.	2.4	43
116	Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology, 2017, 86, 800-811.	2.8	42
117	The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis. PLoS ONE, 2016, 11, e0165815.	2.5	41
118	Analyzing spatial ecological data using linear regression and wavelet analysis. Stochastic Environmental Research and Risk Assessment, 2008, 22, 315-324.	4.0	38
119	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	2.2	38
120	Plant attributes determining the regional abundance of weeds on central European arable land. Journal of Biogeography, 2008, 35, 177-187.	3.0	37
121	Effects of introduced species on floristic similarity: Comparing two US states. Basic and Applied Ecology, 2008, 9, 617-625.	2.7	34
122	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	3.3	34
123	Is there an urban effect in alien plant invasions?. Biological Invasions, 2017, 19, 3505-3513.	2.4	33
124	Trade-offs between plant species richness and carbon storage in the context of afforestation – Examples from afforestation scenarios in the Mulde Basin, Germany. Ecological Indicators, 2017, 73, 139-155.	6.3	33
125	What Will the Future Bring for Biological Invasions on Islands? An Expert-Based Assessment. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	33
126	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	2.7	33

#	Article	IF	CITATIONS
127	Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives?. Science of the Total Environment, 2017, 574, 191-203.	8.0	32
128	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	5.7	32
129	A workflow for standardising and integrating alien species distribution data. NeoBiota, 0, 59, 39-59.	1.0	31
130	Alien plants in southern South America. A framework for evaluation and management of mutual risk of invasion between Chile and Argentina. Biological Invasions, 2010, 12, 3227-3236.	2.4	30
131	Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 78-88.	2.7	30
132	Niche expansion of the invasive plant species <i>Ageratina adenophora</i> despite evolutionary constraints. Journal of Biogeography, 2019, 46, 1306-1315.	3.0	30
133	Alien plant species distribution in the European Alps: influence of species' climatic requirements. Biological Invasions, 2014, 16, 815-831.	2.4	29
134	Wild bee and floral diversity coâ€vary in response to the direct and indirect impacts of land use. Ecosphere, 2017, 8, e02008.	2.2	29
135	Analysis of Vegetation and Soil Patterns using Hyperspectral Remote Sensing, EMI, and Gammaâ€Ray Measurements. Vadose Zone Journal, 2013, 12, 1-15.	2.2	28
136	Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. Journal of Ecology, 2014, 102, 437-446.	4.0	28
137	Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling. Earth System Dynamics, 2018, 9, 593-609.	7.1	28
138	Host plant availability potentially limits butterfly distributions under cold environmental conditions. Ecography, 2014, 37, 301-308.	4.5	27
139	Differences in the trait compositions of non-indigenous and native plants across Germany. Biological Invasions, 2010, 12, 2001-2012.	2.4	25
140	Alternative futures for global biological invasions. Sustainability Science, 2021, 16, 1637-1650.	4.9	25
141	Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME Journal, 2022, 16, 1275-1283.	9.8	24
142	Investigating habitat-specific plant species pools under climate change. Basic and Applied Ecology, 2010, 11, 603-611.	2.7	23
143	Origin of climatic data can determine the transferability of species distribution models. NeoBiota, 0, 59, 61-76.	1.0	23
144	Geographical Constraints Are Stronger than Invasion Patterns for European Urban Floras. PLoS ONE, 2014, 9, e85661.	2.5	22

#	Article	IF	CITATIONS
145	Spatial aspects of trait homogenization within the German flora. Journal of Biogeography, 2008, 35, 2289-2297.	3.0	21
146	Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sensing of Environment, 2022, 277, 112888.	11.0	21
147	Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landscape Ecology, 2017, 32, 581-593.	4.2	20
148	Rice ecosystem services in South-east Asia. Paddy and Water Environment, 2018, 16, 211-224.	1.8	20
149	Trait–environment relationships of plant species at different stages of the introduction process. NeoBiota, 0, 58, 55-74.	1.0	20
150	Urbanisation and alien invasion. , 0, , 120-133.		19
151	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	4.1	19
152	Macroecology meets global change research. Global Ecology and Biogeography, 2008, 17, 3-4.	5.8	18
153	Scenarios as a tool for largeâ€scale ecological research: experiences and legacy of the ALARM project. Global Ecology and Biogeography, 2012, 21, 1-4.	5.8	18
154	Inferring modelâ€based probability of occurrence from preferentially sampled data with uncertain absences using expert knowledge. Methods in Ecology and Evolution, 2014, 5, 739-750.	5.2	17
155	Introducing AlienScenarios: a project to develop scenarios and models of biological invasions for the 21 st century. NeoBiota, 0, 45, 1-17.	1.0	17
156	From Ecosystem Invasibility to Local,Regional and Global Patterns of Invasive Species. , 2008, , 181-196.		16
157	Blurring Alien Introduction Pathways Risks Losing the Focus on Invasive Species Policy. Conservation Letters, 2017, 10, 265-266.	5.7	16
158	Constructing a hybrid species distribution model from standard large-scale distribution data. Ecological Modelling, 2018, 373, 39-52.	2.5	16
159	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. Forest Ecology and Management, 2019, 433, 263-275.	3.2	16
160	Land Use Options – Strategies and Adaptation to Global Change – Terrestrial Environmental Research. Gaia, 2009, 18, 77-80.	0.7	15
161	A Wavelet-Based Extension of Generalized Linear Models to Remove the Effect of Spatial Autocorrelation. åŸëäºŽåºæ³¢æ‰ ©å±•广义线性模型消é™寮©ºé—´ê‡ªç>¸å³çš"影哕 Geographical Ar	alýsis, 20	10, ¹⁴ 2, 323-3
162	The Evolutionary Legacy of Diversification Predicts Ecosystem Function. American Naturalist, 2016, 188, 398-410.	2.1	14

#	Article	IF	CITATIONS
163	The Iberian Peninsula as a potential source for the plant species pool in Germany under projected climate change. Plant Ecology, 2010, 207, 191-201.	1.6	13
164	Climatic and socio-economic factors determine the level of invasion by alien plants in Chile. Plant Ecology and Diversity, 2015, 8, 371-377.	2.4	13
165	Models of alien species richness show moderate predictive accuracy and poor transferability. NeoBiota, 0, 38, 77-96.	1.0	13
166	Phase difference analysis of temperature and vegetation phenology for beech forest: a wavelet approach. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1221-1230.	4.0	11
167	Assessing relative variable importance across different spatial scales: a twoâ€dimensional wavelet analysis. Journal of Biogeography, 2016, 43, 2502-2512.	3.0	11
168	Plant diversity and community composition of rice agroecosystems in Vietnam and the Philippines. Phytocoenologia, 2017, 47, 49-66.	0.5	11
169	The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production. Paddy and Water Environment, 2018, 16, 287-319.	1.8	11
170	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	2.7	10
171	Modelling the impact of climate and land use change on the geographical distribution of leaf anatomy in a temperate flora. Ecography, 2011, 34, 507-518.	4.5	10
172	Ecoinformatics and global change – an overdue liaison. Journal of Vegetation Science, 2011, 22, 577-581.	2.2	10
173	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.7	10
174	Bayesian image restoration models for combining expert knowledge on recording activity with species distribution data. Ecography, 2010, 33, 451-460.	4.5	9
175	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	4.5	9
176	Plant diversity and composition of rice field bunds in Southeast Asia. Paddy and Water Environment, 2018, 16, 359-378.	1.8	9
177	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	9
178	The functional composition of the neophytic flora changes in response to environmental conditions along a rural-urban gradient. NeoBiota, 0, 54, 23-47.	1.0	8
179	British plants as aliens in New Zealand cities: residence time moderates their impact on the beta diversity of urban floras. Biological Invasions, 2017, 19, 3589-3599.	2.4	7
180	Spind: a package for computing spatially corrected accuracy measures. Ecography, 2017, 40, 675-682.	4.5	7

#	Article	IF	CITATIONS
181	spind: an R Package to Account for Spatial Autocorrelation in the Analysis of Lattice Data. Biodiversity Data Journal, 2018, 6, e20760.	0.8	7
182	Disturbed habitats locally reduce the signal of deep evolutionary history in functional traits of plants. New Phytologist, 2021, 232, 1849-1862.	7.3	7
183	Large projects can create useful partnerships. Nature, 2008, 453, 850-850.	27.8	6
184	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	4.9	5
185	Is the EC Afraid of Its Own Visions?. Science, 2007, 315, 1220-1220.	12.6	5
186	Reply to Keller and Springborn: No doubt about invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E221-E221.	7.1	4
187	Functional diversity changes in native and alien urban flora over three centuries. Biological Invasions, 2021, 23, 2337-2353.	2.4	4
188	Climate change impacts on biodiversity: a short introduction with special emphasis on the ALARM approach for the assessment of multiple risks. BioRisk, 0, 5, 3-29.	0.2	3
189	Dispersal in Plants and Animals. , 2018, , 29-47.		2
190	Rice Ecosystem Services in South-East Asia: The LEGATO Project, Its Approaches and Main Results with a Focus on Biocontrol Services. , 2019, , 373-382.		2
191	Local trait organization established. Applied Vegetation Science, 2013, 16, 171-172.	1.9	1
192	Using ecological and life-history characteristics for projecting species' responses to climate change. Frontiers of Biogeography, 2014, 6, .	1.8	1
193	Vascular plant species diversity in Southeast Asian rice ecosystems is determined by climate and soil conditions as well as the proximity of non-paddy habitats. Agriculture, Ecosystems and Environment, 2021, 314, 107346.	5.3	1
194	Open minded and open access: introducing NeoBiota, a new peer-reviewed journal of biological invasions. NeoBiota, 0, 9, 1-12.	1.0	1
195	Grassland type and seasonal effects have a bigger influence on plant functional and taxonomical diversity than prairie dog disturbances in semiarid grasslands. Ecology and Evolution, 2022, 12, .	1.9	1
196	Safeguard species in warming flatlands. Nature, 2013, 502, 303-303.	27.8	0
197	Seven years of NeoBiota – the times, were they a changin'?. NeoBiota, 0, 36, 57-69.	1.0	ο