J Murray Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7989244/publications.pdf

Version: 2024-02-01

94433 82547 6,311 112 37 72 citations g-index h-index papers 120 120 120 3798 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reefs of the Deep: The Biology and Geology of Cold-Water Coral Ecosystems. Science, 2006, 312, 543-547.	12.6	844
2	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	3.2	252
3	Downwelling and deepâ€water bottom currents as food supply mechanisms to the coldâ€water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnology and Oceanography, 2009, 54, 620-629.	3.1	249
4	Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 1048-1062.	1.4	246
5	Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 654-672.	1.4	241
6	Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology, 2007, 349, 205-214.	1.5	207
7	Preserving deep-sea natural heritage: Emerging issues in offshore conservation and management. Biological Conservation, 2007, 138, 299-312.	4.1	205
8	The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Marine Pollution Bulletin, 2006, 52, 549-559.	5.0	148
9	Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats. Coral Reefs, 2005, 24, 654-669.	2.2	131
10	Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems?. Coral Reefs, 2007, 26, 445-448.	2.2	130
11	Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. , 2005, , 771-805.		111
12	Climateâ€induced changes in the suitable habitat of coldâ€water corals and commercially important deepâ€sea fishes in the North Atlantic. Global Change Biology, 2020, 26, 2181-2202.	9.5	109
13	Hidden impacts of ocean acidification to live and dead coral framework. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150990.	2.6	102
14	Cold-water corals in a changing ocean. Current Opinion in Environmental Sustainability, 2014, 7, 118-126.	6.3	92
15	The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related?. Marine Pollution Bulletin, 2003, 46, 7-20.	5.0	90
16	Northeastern Atlantic cold-water coral reefs and climate. Geology, 2011, 39, 743-746.	4.4	88
17	Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity. Marine Ecology - Progress Series, 2009, 397, 139-151.	1.9	88
18	Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Marine Ecology - Progress Series, 2009, 397, 113-124.	1.9	87

#	Article	IF	CITATIONS
19	Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 27-35.	1.4	84
20	Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition., 2005,, 715-729.		81
21	Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic. Facies, 2008, 54, 297-316.	1.4	79
22	Global Observational Needs and Resources for Marine Biodiversity. Frontiers in Marine Science, 2019, 6, .	2.5	77
23	Cold-water coral reef habitats benefit recreationally valuable sharks. Biological Conservation, 2013, 161, 67-70.	4.1	73
24	The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. Journal of Experimental Marine Biology and Ecology, 2016, 481, 34-40.	1.5	70
25	Mainstreaming marine biodiversity into the SDGs: The role of other effective area-based conservation measures (SDG 14.5). Marine Policy, 2018, 93, 251-261.	3.2	67
26	Title is missing!. Hydrobiologia, 2000, 441, 173-183.	2.0	65
27	Sensitivity of marine protected area network connectivity to atmospheric variability. Royal Society Open Science, 2016, 3, 160494.	2.4	64
28	Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. , 2005, , 483-502.		61
29	Physiological response of the cold-water coral <i>Desmophyllum dianthus</i> to thermal stress and ocean acidification. PeerJ, 2016, 4, e1606.	2.0	59
30	Ocean sprawl facilitates dispersal and connectivity of protected species. Scientific Reports, 2018, 8, 11346.	3.3	57
31	Tidal downwelling and implications for the carbon biogeochemistry of coldâ€water corals in relation to future ocean acidification and warming. Global Change Biology, 2013, 19, 2708-2719.	9.5	51
32	Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 113, 80-89.	1.4	51
33	Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 88, 8-16.	1.4	50
34	Do bottom-intensified diurnal tidal currents shape the alignment of carbonate mounds in the NE Atlantic?. Geo-Marine Letters, 2007, 27, 391-397.	1.1	49
35	Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs, 2010, 29, 427-436.	2.2	49
36	Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: A high resolution U-series and 14C chronology. Earth and Planetary Science Letters, 2013, 375, 176-187.	4.4	45

#	Article	lF	CITATIONS
37	Reef-aggregating behaviour by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs?. Journal of the Marine Biological Association of the United Kingdom, 2005, 85, 813-819.	0.8	44
38	Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences, 2013, 10, 2737-2746.	3.3	44
39	Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic. Scientific Reports, 2014, 4, 3671.	3.3	44
40	Characterization and Mapping of a Deep-Sea Sponge Ground on the Tropic Seamount (Northeast) Tj ETQq0 0 0 $^\circ$ 2019, 6, .	gBT /Over 2.5	lock 10 Tf 50 43
41	Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Marine Ecology - Progress Series, 2015, 525, 97-104.	1.9	43
42	The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway. Coral Reefs, 2018, 37, 253-266.	2.2	39
43	Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats. Coral Reefs, 2017, 36, 255-268.	2.2	38
44	Data challenges and opportunities for environmental management of North Sea oil and gas decommissioning in an era of blue growth. Marine Policy, 2018, 97, 130-138.	3.2	38
45	Behavioural differences in microhabitat use by damselfishes (Pomacentridae): implications for reef fish biodiveristy. Journal of Experimental Marine Biology and Ecology, 1996, 202, 85-95.	1.5	37
46	The Occurrence of the Coral <i>Lophelia pertusa</i> and Other Conspicuous Epifauna around an Oil Platform in the North Sea. Underwater Technology, 2002, 25, 83-92.	0.3	37
47	Historic scale and persistence of drill cuttings impacts on North Sea benthos. Marine Environmental Research, 2017, 129, 219-228.	2.5	37
48	Larval behaviour, dispersal and population connectivity in the deep sea. Scientific Reports, 2020, 10, 10675.	3.3	37
49	Primary site and initial products of ammonium assimilation in the symbiotic sea anemone Anemonia viridis. Marine Biology, 1999, 135, 223-236.	1.5	36
50	Baseline Assessment of Marine Litter and Microplastic Ingestion by Cold-Water Coral Reef Benthos at the East Mingulay Marine Protected Area (Sea of the Hebrides, Western Scotland). Frontiers in Marine Science, 2019, 6, .	2.5	36
51	Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of "Coralporosis―as an Indicator of Habitat Integrity. Frontiers in Marine Science, 2020, 7, .	2.5	36
52	Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs, 2016, 35, 193-208.	2.2	34
53	Global Biodiversity in Cold-Water Coral Reef Ecosystems. , 2017, , 235-256.		34
54	Self-recognition in corals facilitates deep-sea habitat engineering. Scientific Reports, 2014, 4, 6782.	3.3	33

#	Article	IF	CITATIONS
55	Fish communities associated with cold-water corals vary with depth and substratum type. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 114, 43-54.	1.4	32
56	The Diversity and Ecological Role of Non-scleractinian Corals (Antipatharia and Alcyonacea) on Scleractinian Cold-Water Coral Mounds. Frontiers in Marine Science, 2019, 6, .	2.5	31
57	Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): Implications for coral reef build-up. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 286-296.	1.4	30
58	18O/16O and 13C/12C in an ahermatypic deep-water coralLophelia pertusa from the North Atlantic: a case of disequilibrium isotope fractionation. Rapid Communications in Mass Spectrometry, 2000, 14, 1332-1336.	1.5	28
59	Ecohydrodynamics of Cold-Water Coral Reefs: A Case Study of the Mingulay Reef Complex (Western) Tj ETQq1 1	0,784314	rgBT /Over
60	Growth and branching patterns of <i>Lophelia pertusa</i> (Scleractinia) from the North Sea. Journal of the Marine Biological Association of the United Kingdom, 2011, 91, 831-835.	0.8	27
61	Assessing the living and dead proportions of cold-water coral colonies: implications for deep-water Marine Protected Area monitoring in a changing ocean. Peerl, 2017, 5, e3705.	2.0	27
62	Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Scientific Reports, 2014, 4, 5589.	3.3	26
63	Distribution of Deep-Sea Sponge Aggregations in an Area of Multisectoral Activities and Changing Oceanic Conditions. Frontiers in Marine Science, 2019, 6, .	2.5	26
64	Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 2020, 119, 106624.	6.3	23
65	Global Biodiversity in Cold-Water Coral Reef Ecosystems. , 2016, , 1-21.		23
66	Recommendations for best practice in deep-sea habitat classification: Bullimore et al. as a case study. ICES Journal of Marine Science, 2014, 71, 895-898.	2.5	22
67	Video-assisted grabbing: a minimally destructive method of sampling azooxanthellate coral banks. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 365-366.	0.8	21
68	Cold-Water Coral Reefs. , 2019, , 675-687.		21
69	An Efficient Multi-Objective Optimization Method for Use in the Design of Marine Protected Area Networks. Frontiers in Marine Science, 2019, 6, .	2.5	20
70	A new laboratory method for monitoring deep-water coral polyp behaviour. Hydrobiologia, 2002, 471, 143-148.	2.0	19
71	Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form. Advances in Marine Biology, 2018, 79, 33-60.	1.4	19
72	Seamount eggâ€laying grounds of the deepâ€water skate <i>Bathyraja richardsoni</i> . Journal of Fish Biology, 2016, 89, 1473-1481.	1.6	17

#	Article	IF	Citations
73	Using the Goldilocks Principle to model coral ecosystem engineering. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211260.	2.6	17
74	Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia, 2001, 461, 25-35.	2.0	16
75	Mapping cold-water coral biomass: an approach to derive ecosystem functions. Coral Reefs, 2021, 40, 215-231.	2.2	16
76	Exceptional 20th Century Ocean Circulation in the Northeast Atlantic. Geophysical Research Letters, 2020, 47, e2020GL087577.	4.0	15
77	Symbiotic anemones can grow when starved: nitrogen budget for Anemonia viridis in ammonium-supplemented seawater. Marine Biology, 1999, 133, 29-35.	1.5	14
78	Cold-Water Corals in an Era of Rapid Global Change: Are These the Deep Ocean's Most Vulnerable Ecosystems?. , 2016, , 593-606.		14
79	Deepâ€sea coral <i>δ</i> ¹³ C: A tool to reconstruct the difference between seawater pH and <i>δ</i> ¹¹ Bâ€derived calcifying fluid pH. Geophysical Research Letters, 2016, 43, 299-308.	4.0	14
80	Multiple feeding strategies observed in the cold-water coral Lophelia pertusa. Journal of the Marine Biological Association of the United Kingdom, 2019, 99, 1281-1283.	0.8	12
81	Systematic Conservation Planning at an Ocean Basin Scale: Identifying a Viable Network of Deep-Sea Protected Areas in the North Atlantic and the Mediterranean. Frontiers in Marine Science, 2021, 8, .	2.5	12
82	Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Marine Biology, 2014, 161, 1499-1506.	1.5	11
83	Towards a common approach to the assessment of the environmental status of deep-sea ecosystems in areas beyond national jurisdiction. Marine Policy, 2020, 121, 104182.	3.2	11
84	North Atlantic ecosystem sensitivity to Holocene shifts in Meridional Overturning Circulation. Geophysical Research Letters, 2016, 43, 291-298.	4.0	10
85	38 Cold-Water Coral in Aquaria: Advances and Challenges. A Focus on the Mediterranean. Coral Reefs of the World, 2019, , 435-471.	0.7	10
86	Protocooperation among small polyps allows the coral <i>Astroides calycularis</i> to prey on large jellyfish. Ecology, 2018, 99, 2400-2401.	3.2	9
87	Exploring ecosystemâ€based management in the North Atlantic. Journal of Fish Biology, 2022, 101, 342-350.	1.6	9
88	Scotland as a case study for how benefits of marine ecosystem services may contribute to the commercial fishing industry. Marine Policy, 2018, 93, 271-283.	3.2	8
89	Recognising Stakeholder Conflict and Encouraging Consensus of †Science-Based Management†Approaches for Marine Biodiversity Beyond National Jurisdiction (BBNJ). Frontiers in Marine Science, 2020, 7, .	2.5	8
90	Rockall and Hatton: Resolving a Super Wicked Marine Governance Problem in the High Seas of the Northeast Atlantic Ocean. Frontiers in Marine Science, 2019, 6, .	2.5	7

#	Article	IF	Citations
91	North Atlantic Basin-Scale Multi-Criteria Assessment Database to Inform Effective Management and Protection of Vulnerable Marine Ecosystems. Frontiers in Marine Science, 2021, 8, .	2.5	7
92	Hidden structural heterogeneity enhances marine hotspots' biodiversity. Coral Reefs, 2021, 40, 1615-1630.	2.2	7
93	Biomass Mapping for an Improved Understanding of the Contribution of Cold-Water Coral Carbonate Mounds to C and N Cycling. Frontiers in Marine Science, 2021, 8, .	2.5	7
94	Full effects of oil rigs on corals are not yet known. Nature, 2000, 403, 242-242.	27.8	6
95	Soaking up the oil: Biological impacts of dispersants and crude oil on the sponge Halichondria panicea. Chemosphere, 2020, 257, 127109.	8.2	6
96	Multiscale mechanical consequences of ocean acidification for cold-water corals. Scientific Reports, 2022, 12, 8052.	3.3	6
97	Cold-water corals. , 0, , 20-66.		5
98	Sensitivity of a coldâ€water coral reef to interannual variability in regional oceanography. Diversity and Distributions, 2021, 27, 1719-1731.	4.1	5
99	Distribution of Megabenthic Communities Under Contrasting Settings in Deep-Sea Cold Seeps Near Northwest Atlantic Canyons. Frontiers in Marine Science, 2021, 8, .	2.5	5
100	One on Top of the Other: Exploring the Habitat Cascades Phenomenon in Iconic Biogenic Marine Habitats. Diversity, 2022, 14, 290.	1.7	5
101	Human impacts on deep-sea sponge grounds: Applying environmental omics to monitoring. Advances in Marine Biology, 2021, 89, 53-78.	1.4	3
102	First record of Bedotella armata (Cnidaria: Hydrozoa) from the Porcupine Seabight: do north-east Atlantic carbonate mound fauna have Mediterranean ancestors?. Marine Biodiversity Records, 2008, 1,	1.2	2
103	Environmental controls and anthropogenic impacts on deep-sea sponge grounds in the Faroe-Shetland Channel, NE Atlantic: the importance of considering spatial scale to distinguish drivers of change. ICES Journal of Marine Science, 2019, , .	2.5	2
104	Environmental controls and anthropogenic impacts on deep-sea sponge grounds in the Faroe-Shetland Channel, NE Atlantic: the importance of considering spatial scale to distinguish drivers of change. ICES Journal of Marine Science, 2020, 77, 2009-2009.	2.5	2
105	Tourist Preferences for Seamount Conservation in the Galapagos Marine Reserve. Frontiers in Marine Science, 2021, 7, .	2.5	2
106	Impacts and conservation., 0,, 237-262.		1
107	Habitats and ecology. , 0, , 142-174.		1
108	Marine Sponges in a Snowstorm $\hat{a} \in ``Extreme Sensitivity of a Sponge Holobiont to Marine Oil Snow and Chemically Dispersed Oil Pollution. Frontiers in Microbiology, 0, 13, .$	3.5	1

#	Article	lF	CITATIONS
109	History and research approaches. , 0, , 1-19.		O
110	Palaeontology., 0,, 175-209.		0
111	Reefs and mounds., 0,, 108-141.		O
112	Corals as archives. , 0, , 210-236.		0