Yun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988893/publications.pdf

Version: 2024-02-01

257450 223800 2,282 65 24 46 citations h-index g-index papers 66 66 66 1354 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geometry-preserving full-waveform tomography and its application in the Longmen Shan area. Science China Earth Sciences, 2022, 65, 437-448.	5.2	3
2	Magnetotelluric Evidence for Distributed Lithospheric Modification Beneath the Yinchuanâ€ilantai Rift System and Its Implications for Late Cenozoic Rifting in Western North China. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	7
3	Panoptic View of Mantle Flow Beneath Transâ€Continental Northeast Asia: Distinct Variation Detected From â^1⁄42,000Âkm Shear Wave Splitting Profile. Geophysical Research Letters, 2022, 49, .	4.0	4
4	A Synthesis of Geophysical Data in Southeastern North China Craton: Implications for the Formation of the Arcuate Xuhuai Thrust Belt. Journal of Earth Science (Wuhan, China), 2022, 33, 552-566.	3.2	3
5	Distinct Lithospheric Structure in the Xing'anâ€Mongolian Orogenic Belt. Geophysical Research Letters, 2022, 49, .	4.0	12
6	Magnetotelluric signatures of Neoproterozoic subduction, and subsequent lithospheric reactivation and thinning beneath central South China. Tectonophysics, 2022, 833, 229365.	2.2	6
7	Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision. Nature Communications, 2022, 13, .	12.8	27
8	Lateral Seismic Anisotropy Variations Record Interaction Between Tibetan Mantle Flow and Plumeâ€Strengthened Yangtze Craton. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020841.	3.4	17
9	Deep electrical resistivity structure across the Gyaring Co Fault in Central Tibet revealed by magnetotelluric data and its implication. Tectonophysics, 2021, 809, 228835.	2.2	17
10	Crustal SiO ₂ Content of the Emeishan Large Igneous Province and its Implications for Magma Volume and Plumbing System. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009783.	2.5	11
11	Formation mechanism of the North–South Gravity Lineament in eastern China. Tectonophysics, 2021, 818, 229074.	2.2	12
12	Backâ€Arc Extension of the Central Bransfield Basin Induced by Ridge–Trench Collision: Implications From Ambient Noise Tomography and Stress Field Inversion. Geophysical Research Letters, 2021, 48, e2021GL095032.	4.0	6
13	Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves. Earth and Planetary Science Letters, 2020, 531, 115954.	4.4	37
14	A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data. Earth and Planetary Science Letters, 2020, 548, 116493.	4.4	39
15	Pn uppermost mantle tomography of Central Tibet: Implication for mechanisms of N-S rifts and conjugate faults. Tectonophysics, 2020, 788, 228499.	2.2	12
16	Geodynamic processes of the continental deep subduction: Constraints from the fine crustal structure beneath the Pamir plateau. Science China Earth Sciences, 2020, 63, 649-661.	5. 2	5
17	Seismic evidence of tearing of the Indian subducting lithospheric slab and the Tibetan mantle lithosphere beneath the Yadongâ€Gulu rift in central Tibet. Acta Geologica Sinica, 2019, 93, 74-74.	1.4	O
18	Highâ€resolution uppermost mantle velocity structure beneath central Tibet and its implications for geodynamics. Acta Geologica Sinica, 2019, 93, 55-55.	1.4	O

#	Article	IF	CITATIONS
19	New progress on the onshore-offshore seismic survey in East China Continental Margin. Solid Earth Sciences, 2019, 4, 85-91.	1.7	1
20	Upperâ€Crustal Anisotropy of the Conjugate Strikeâ€Slip Fault Zone in Central Tibet Analyzed Using Local Earthquakes and Shearâ€Wave Splitting. Bulletin of the Seismological Society of America, 2019, 109, 1968-1984.	2.3	16
21	Electrical resistivity structure of the Xiaojiang strike-slip fault system (SW China) and its tectonic implications. Journal of Asian Earth Sciences, 2019, 176, 57-67.	2.3	31
22	Crustal melting beneath orogenic plateaus: Insights from 3-D thermo-mechanical modeling. Tectonophysics, 2019, 761, 1-15.	2.2	27
23	Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: New evidence based on shear wave splitting measurements. Earth and Planetary Science Letters, 2019, 514, 75-83.	4.4	51
24	Overview of deep structures under the Changbaishan volcanic area in Northeast China. Science China Earth Sciences, 2019, 62, 935-952.	5.2	16
25	Contrasting crustal deformation mechanisms in the Longmenshan and West Qinling orogenic belts, NE Tibet, revealed by magnetotelluric data. Journal of Asian Earth Sciences, 2019, 176, 120-128.	2.3	11
26	Chainâ€Style Landslide Hazardous Process: Constraints From Seismic Signals Analysis of the 2017 Xinmo Landslide, SW China. Journal of Geophysical Research: Solid Earth, 2019, 124, 2025-2037.	3.4	22
27	长白山ç«å±±åŒ°æ·±éƒ¨ç»"构探测的ç"究进展与展望. SCIENTIA SINICA Terrae, 2019, 49, 778-7	'9 5. 3	2
28	Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush. Earth and Planetary Science Letters, 2018, 482, 478-489.	4.4	29
29	Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang-Guiyang gravity profile. Earth and Planetary Physics, 2018, 2, 1-8.	1.1	0
30	Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding. Tectonophysics, 2017, 721, 387-394.	2,2	12
31	Multisource Remote Sensing Imagery Fusion Scheme Based on Bidimensional Empirical Mode Decomposition (BEMD) and Its Application to the Extraction of Bamboo Forest. Remote Sensing, 2017, 9, 19.	4.0	23
32	SANDWICH: A 2D Broadband Seismic Array in Central Tibet. Seismological Research Letters, 2016, 87, 864-873.	1.9	14
33	3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth and Planetary Science Letters, 2016, 443, 162-175.	4.4	135
34	Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment. Tectonophysics, 2016, 672-673, 16-23.	2.2	35
35	Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity. Science China Earth Sciences, 2015, 58, 1133-1147.	5.2	53
36	Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth and Planetary Science Letters, 2015, 413, 13-24.	4.4	171

#	Article	IF	CITATIONS
37	Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 2015, 430, 171-177.	4.4	65
38	Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment. Earth and Planetary Science Letters, 2015, 432, 103-114.	4.4	78
39	Zhongjie Zhang (1964 – 2013). Tectonophysics, 2014, 627, 4-5.	2.2	2
40	The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust. Earth and Planetary Science Letters, 2014, 408, 370-377.	4.4	71
41	S-wave velocity images of the Dead Sea Basin provided by ambient seismic noise. Journal of Asian Earth Sciences, 2013, 75, 26-35.	2.3	13
42	Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 2013, 606, 140-159.	2.2	58
43	Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Research, 2013, 24, 946-957.	6.0	138
44	Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift. Tectonophysics, 2013, 606, 178-186.	2.2	34
45	Geophysical constraints on mesozoic disruption of North China Craton by underplatingâ€triggered lowerâ€crust flow of the Archaean lithosphere. Terra Nova, 2013, 25, 245-251.	2.1	6
46	Lateral variation of the strength of lithosphere across the eastern North China Craton: New constraints on lithospheric disruption. Gondwana Research, 2012, 22, 1047-1059.	6.0	36
47	Modeling of Rayleigh wave dispersion in Iberia. Geoscience Frontiers, 2011, 2, 35-48.	8.4	4
48	An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 2011, 40, 977-989.	2.3	122
49	SKS splitting measurements with horizontal component misalignment. Geophysical Journal International, 2011, 185, 329-340.	2.4	25
50	Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19, 994-1007.	6.0	74
51	Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas. Pure and Applied Geophysics, 2010, 167, 1171-1203.	1.9	50
52	Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 2010, 292, 254-264.	4.4	203
53	Multiple superimposed probability tomography on a second electrical field. Journal of Geophysics and Engineering, 2009, 6, 82-86.	1.4	0
54	Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions. Journal of Asian Earth Sciences, 2009, 36, 289-302.	2.3	52

Yun Chen

#	Article	IF	CITATIONS
55	Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letters, 2009, 36, .	4.0	164
56	Crustâ€Mantle Velocity Structure of S Wave and Dynamic Process Beneath Burma Arc and Its Adjacent Regions. Chinese Journal of Geophysics, 2008, 51, 105-114.	0.2	22
57	Using Surface Wave and Receiver Function to Jointly Inverse the Crust-Mantle Velocity Structure in the West Yunnan Area. Chinese Journal of Geophysics, 2005, 48, 1148-1155.	0.2	21
58	First-Arrival Traveltime and Amplitude Calculation From Monochromatic Two-Way Wave Equation in Frequency Domain. Chinese Journal of Geophysics, 2005, 48, 467-473.	0.2	1
59	S-wave velocity and Poisson's ratio structure of crust in Yunnan and its implication. Science in China Series D: Earth Sciences, 2005, 48, 210-218.	0.9	38
60	Complex Polarization Analysis Based on Windowed Hilbert Transform and Its Application. Chinese Journal of Geophysics, 2005, 48, 960-967.	0.2	5
61	Crust–upper mantle seismic velocity structure across Southeastern China. Tectonophysics, 2005, 395, 137-157.	2.2	100
62	A Robust and Accurate Traveltime Calculation from Frequency-domain Two-way Wave-equation Modeling Algorithm. Geosystem Engineering, 2004, 7, 12-20.	1.4	0
63	Reconstruction of Semblance Section for the Crust/Mantle Reflection Structure by Wideâ€Angle Seismic Data. Chinese Journal of Geophysics, 2004, 47, 533-538.	0.2	7
64	East-west crustal structure and "down-bowing―Moho under the northern Tibet revealed by wide-angle seismic profile. Science in China Series D: Earth Sciences, 2002, 45, 550.	0.9	23
65	The Velocity Tomography with Crosshole Seismic Data. Chinese Journal of Geophysics, 2000, 43, 914-920.	0.2	O