Christina M Van Itallie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. Journal of Cell Science, 2018, 131, .	2.0	7
2	Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers, 2018, 6, e1382671.	3.2	55
3	From barriers to channels. Tissue Barriers, 2018, 6, 1510723.	3.2	0
4	Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Molecular Biology of the Cell, 2017, 28, 524-534.	2.1	111
5	Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nature Communications, 2017, 8, 1030.	12.8	55
6	A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Molecular Biology of the Cell, 2015, 26, 2769-2787.	2.1	55
7	Proteomic Analysis of Proteins Surrounding Occludin and Claudin-4 Reveals Their Proximity to Signaling and Trafficking Networks. PLoS ONE, 2015, 10, e0117074.	2.5	73
8	Biotin ligase tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell and cell-substrate adhesion. Journal of Cell Science, 2014, 127, 885-95.	2.0	84
9	Architecture of tight junctions and principles of molecular composition. Seminars in Cell and Developmental Biology, 2014, 36, 157-165.	5.0	421
10	The N and C Termini of ZO-1 Are Surrounded by Distinct Proteins and Functional Protein Networks. Journal of Biological Chemistry, 2013, 288, 13775-13788.	3.4	110
11	Claudin interactions in and out of the tight junction. Tissue Barriers, 2013, 1, e25247.	3.2	119
12	Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Molecular Biology of the Cell, 2012, 23, 577-590.	2.1	208
13	Phosphorylation of claudin-2 on serine 208 promotes membrane retention and reduces trafficking to lysosomes. Journal of Cell Science, 2012, 125, 4902-12.	2.0	67
14	Caveolin binds independently to claudinâ€2 and occludin. Annals of the New York Academy of Sciences, 2012, 1257, 103-107.	3.8	21
15	SUMOylation of claudinâ€2. Annals of the New York Academy of Sciences, 2012, 1258, 60-64.	3.8	29
16	Claudin-2 Forms Homodimers and Is a Component of a High Molecular Weight Protein Complex. Journal of Biological Chemistry, 2011, 286, 3442-3450.	3.4	69
17	Occludin is required for cytokine-induced regulation of tight junction barriers. Journal of Cell Science, 2010, 123, 2844-2852.	2.0	170
18	Claudinâ€2â€dependent Changes in Noncharged Solute Flux Are Mediated by the Extracellular Domains and Require Attachment to the PDZâ€scaffold. Annals of the New York Academy of Sciences, 2009, 1165, 82-87.	3.8	28

#	Article	IF	CITATIONS
19	The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. Journal of Cell Science, 2008, 121, 298-305.	2.0	356
20	CLAUDINS AND EPITHELIAL PARACELLULAR TRANSPORT. Annual Review of Physiology, 2006, 68, 403-429.	13.1	1,006
21	Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. American Journal of Physiology - Cell Physiology, 2003, 284, C1346-C1354.	4.6	359