List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7988797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox-Coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase. Science, 1998, 280, 1723-1729.	12.6	1,081
2	The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15304-15309.	7.1	414
3	Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics, 2010, 26, 46-52.	4.1	295
4	Insight into a natural Diels–Alder reaction from the structure of macrophomate synthase. Nature, 2003, 422, 185-189.	27.8	187
5	Structural reorganization of the bacterial cell-division protein FtsZ from <i>Staphylococcus aureus</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1175-1188.	2.5	154
6	Crystal structure of the octameric pore of staphylococcal Î ³ -hemolysin reveals the Î ² -barrel pore formation mechanism by two components. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17314-17319.	7.1	152
7	Crystal structure of archaeal toxin-antitoxin RelE–RelB complex with implications for toxin activity and antitoxin effects. Nature Structural and Molecular Biology, 2005, 12, 327-331.	8.2	146
8	The Structure of Rat Liver Vault at 3.5 Angstrom Resolution. Science, 2009, 323, 384-388.	12.6	135
9	Ammonia Channel Couples Glutaminase with Transamidase Reactions in GatCAB. Science, 2006, 312, 1954-1958.	12.6	123
10	Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17957-17961.	7.1	118
11	The crystal structure of human MRP14 (S100A9), a Ca2+-dependent regulator protein in inflammatory process. Journal of Molecular Biology, 2002, 316, 265-276.	4.2	96
12	Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2008, 283, 36328-36337.	3.4	87
13	Molecular Basis for the Recognition of Long-chain Substrates by Plant α-Glucosidases. Journal of Biological Chemistry, 2013, 288, 19296-19303.	3.4	83
14	How Oligomerization Contributes to the Thermostability of an Archaeon Protein. Journal of Biological Chemistry, 2004, 279, 32957-32967.	3.4	78
15	Crystal structure of hypothetical protein TTHB192 fromThermus thermophilusHB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Science, 2006, 15, 1494-1499.	7.6	78
16	Structural Basis for Multimeric Heme Complexation through a Specific Protein-Heme Interaction. Journal of Biological Chemistry, 2008, 283, 28649-28659.	3.4	75
17	Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nature Communications, 2014, 5, 4897.	12.8	75
18	LAFIRE: software for automating the refinement process of protein-structure analysis. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 189-196.	2.5	71

#	Article	IF	CITATIONS
19	Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal) Tj ETQq1 1 C).784314 2.2	rgBT /Overlo
20	Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure, 1997, 5, 1199-1208.	3.3	66
21	Structure of the type IL-asparaginase from the hyperthermophilic archaeonPyrococcus horikoshiiat 2.16â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 294-301.	2.5	63
22	Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1382-1391.	2.5	63
23	Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Research, 2008, 36, 7110-7123.	14.5	62
24	Structural Change in FtsZ Induced by Intermolecular Interactions between Bound GTP and the T7 Loop. Journal of Biological Chemistry, 2014, 289, 3501-3509.	3.4	62
25	RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. EMBO Journal, 2009, 28, 1362-1373.	7.8	61
26	An automatic diffraction data collection system with an imaging plate. Journal of Applied Crystallography, 1990, 23, 334-339.	4.5	60
27	The Three-Dimensional Structure of Septum Site-Determining Protein MinD from Pyrococcus horikoshii OT3 in Complex with Mg-ADP. Structure, 2001, 9, 817-826.	3.3	58
28	Crystal Structures of the Multidrug Binding Repressor Corynebacterium glutamicum CgmR in Complex with Inducers and with an Operator. Journal of Molecular Biology, 2010, 403, 174-184.	4.2	58
29	Molecular basis of dihydrouridine formation on tRNA. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19593-19598.	7.1	58
30	Molecular basis of alanine discrimination in editing site. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11669-11674.	7.1	56
31	2â€Methylâ€2,4â€pentanediol induces spontaneous assembly of staphylococcal αâ€hemolysin into heptameric pore structure. Protein Science, 2011, 20, 448-456.	7.6	54
32	Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3â€2-terminal phosphate and 5â€2-OH. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15235-15240.	7.1	53
33	Crystal Structure of 1-Aminocyclopropane-1-carboxylate Deaminase from Hansenula saturnus. Journal of Biological Chemistry, 2000, 275, 34557-34565.	3.4	52
34	Crystal Structure of the Pyrococcus horikoshii Isopropylmalate Isomerase Small Subunit Provides Insight into the Dual Substrate Specificity of the Enzyme. Journal of Molecular Biology, 2004, 344, 325-333.	4.2	52
35	Structure and Thermodynamics of the Extraordinarily Stable Molten Globule State of Canine Milk Lysozymeâ€,‡. Biochemistry, 2000, 39, 3248-3257.	2.5	51
36	Structural Basis for Translation Factor Recruitment to the Eukaryotic/Archaeal Ribosomes. Journal of Biological Chemistry, 2010, 285, 4747-4756.	3.4	51

#	Article	IF	CITATIONS
37	Structural Insights into the Epimerization of β-1,4-Linked Oligosaccharides Catalyzed by Cellobiose 2-Epimerase, the Sole Enzyme Epimerizing Non-anomeric Hydroxyl Groups of Unmodified Sugars. Journal of Biological Chemistry, 2014, 289, 3405-3415.	3.4	49
38	Structure of the Monomeric Isocitrate Dehydrogenase. Structure, 2002, 10, 1637-1648.	3.3	48
39	Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3748-3753.	7.1	48
40	Structural basis for pore-forming mechanism of staphylococcal α-hemolysin. Toxicon, 2015, 108, 226-231.	1.6	48
41	Structural characterization of the Acetobacter xylinum endo-β-1,4-glucanase CMCax required for cellulose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1069-1077.	2.6	47
42	Structure of archaeal translational initiation factor 2 betaÂ-GDP reveals significant conformational change of the beta-subunit and switch 1 region. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13016-13021.	7.1	45
43	Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA1. FEBS Letters, 2004, 556, 167-174.	2.8	43
44	Snapshots of Dynamics in Synthesizing <i>N</i> ⁶ -Isopentenyladenosine at the tRNA Anticodon. Biochemistry, 2009, 48, 5057-5065.	2.5	43
45	Directed Evolution and Structural Analysis of NADPH-Dependent Acetoacetyl Coenzyme A (Acetoacetyl-CoA) Reductase from Ralstonia eutropha Reveals Two Mutations Responsible for Enhanced Kinetics. Applied and Environmental Microbiology, 2013, 79, 6134-6139.	3.1	43
46	The c-di-GMP recognition mechanism of the PilZ domain of bacterial cellulose synthase subunit A. Biochemical and Biophysical Research Communications, 2013, 431, 802-807.	2.1	42
47	Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis. Nucleic Acids Research, 2015, 43, 4746-4757.	14.5	42
48	Crystal Structure of the Monomeric Isocitrate Dehydrogenase in the Presence of NADP+. Journal of Biological Chemistry, 2003, 278, 36897-36904.	3.4	41
49	Crystal structure of BinB: A receptor binding component of the binary toxin from <i>Lysinibacillus sphaericus</i> . Proteins: Structure, Function and Bioinformatics, 2014, 82, 2703-2712.	2.6	41
50	Crystal Structure of a Ribonuclease P Protein Ph1601p from Pyrococcus horikoshii OT3: An Archaeal Homologue of Human Nuclear Ribonuclease P Protein Rpp21,. Biochemistry, 2005, 44, 12086-12093.	2.5	40
51	The structure of alanyl-tRNA synthetase with editing domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11028-11033.	7.1	40
52	Structural and Mutational Analyses of Drp35 from Staphylococcus aureus. Journal of Biological Chemistry, 2007, 282, 5770-5780.	3.4	39
53	Crystal structure of <i>Ruminococcus albus</i> cellobiose 2â€epimerase: Structural insights into epimerization of unmodified sugar. FEBS Letters, 2013, 587, 840-846.	2.8	39
54	Crystal Structure of Hyperthermophilic Archaeal Initiation Factor 5A: A Homologue of Eukaryotic Initiation Factor 5A (eIF-5A). Journal of Biochemistry, 2003, 133, 75-81.	1.7	38

#	Article	IF	CITATIONS
55	Crystal structure of hypothetical protein PH0642 fromPyrococcus horikoshii at 1.6Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 57, 869-873.	2.6	38
56	Structural and Enzymatic Properties of 1-Aminocyclopropane-1-carboxylate Deaminase Homologue from Pyrococcus horikoshii. Journal of Molecular Biology, 2004, 341, 999-1013.	4.2	37
57	Biochemical and structural characterization of oxygen-sensitive 2-thiouridine synthesis catalyzed by an iron-sulfur protein TtuA. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4954-4959.	7.1	37
58	X-ray structure of azide-bound fully oxidized cytochromecoxidase from bovine heart at 2.9â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 529-535.	2.5	36
59	DNA Recognition Mechanism of the ONECUT Homeodomain of Transcription Factor HNF-6. Structure, 2007, 15, 75-83.	3.3	35
60	Cellulose production by Enterobacter sp. CJF-002 and identification of genes for cellulose biosynthesis. Cellulose, 2012, 19, 1989-2001.	4.9	35
61	Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α. Nucleic Acids Research, 2014, 42, 14042-14052.	14.5	35
62	The CGL2612 Protein from Corynebacterium glutamicum Is a Drug Resistance-related Transcriptional Repressor. Journal of Biological Chemistry, 2005, 280, 38711-38719.	3.4	33
63	Crystal structure of an RtcB homolog protein (PH1602-extein protein) from Pyrococcus horikoshii reveals a novel fold. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1119-1122.	2.6	33
64	Structure of the <i>Pseudomonas aeruginosa</i> transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 382-387.	7.1	33
65	Reaction Intermediate Structures of 1-Aminocyclopropane-1-carboxylate Deaminase. Journal of Biological Chemistry, 2003, 278, 41069-41076.	3.4	31
66	Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase fromPyrococcus horikoshiireveals a novel domain related to the peripheral stalk. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 483-488.	2.5	31
67	Crystal Structure of the Ectodomain of Human FcαRI. Journal of Biological Chemistry, 2003, 278, 27966-27970.	3.4	30
68	Crystal Structure of the 3.8-MDa Respiratory Supermolecule Hemocyanin at 3.0ÂÃ Resolution. Structure, 2015, 23, 2204-2212.	3.3	29
69	Structural Analysis of an Insect Lysozyme Exhibiting Catalytic Efficiency at Low Temperatures,. Biochemistry, 2002, 41, 12086-12092.	2.5	28
70	Crystal structure of the flexible tandem repeat domain of bacterial cellulose synthesis subunit C. Scientific Reports, 2017, 7, 13018.	3.3	28
71	pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2234-2241.	2.6	28
72	ID14 `Quadriga', a Beamline for Protein Crystallography at the ESRF. Journal of Synchrotron Radiation, 1998, 5, 215-221.	2.4	27

#	Article	IF	CITATIONS
73	A Helical String of Alternately Connected Three-Helix Bundles for the Cell Wall-Associated Adhesion Protein Ebh from Staphylococcus aureus. Structure, 2008, 16, 488-496.	3.3	27
74	Staphylococcus aureus surface protein SasC contributes to intercellular autoaggregation of Staphylococcus aureus. Biochemical and Biophysical Research Communications, 2008, 377, 1102-1106.	2.1	27
75	Catalytic Mechanism of Retaining α-Galactosidase Belonging to Glycoside Hydrolase Family 97. Journal of Molecular Biology, 2009, 392, 1232-1241.	4.2	27
76	The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Research, 2018, 46, 3232-3244.	14.5	27
77	Function and structure of <scp>GH</scp> 13_31 αâ€glucosidase with high αâ€(1→4)â€glucosidic linkage speci and transglucosylation activity. FEBS Letters, 2018, 592, 2268-2281.	ficity 2.8	27
78	Crystal Structures of the Ribonuclease MC1 from Bitter Gourd Seeds, Complexed with 2′-UMP or 3′-UMP, Reveal Structural Basis for Uridine Specificity. Biochemical and Biophysical Research Communications, 2000, 275, 572-576.	2.1	26
79	Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition. Nucleic Acids Research, 2010, 38, 672-682.	14.5	26
80	Asymmetric Trimeric Ring Structure of the Nucleocapsid Protein of Tospovirus. Journal of Virology, 2017, 91, .	3.4	26
81	Structural basis of reverse nucleotide polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20970-20975.	7.1	25
82	Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B. Biochemical and Biophysical Research Communications, 2004, 319, 725-732.	2.1	24
83	The loop structure of <i>Actinomycete</i> glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS Journal, 2015, 282, 4001-4014.	4.7	24
84	Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex. Rna, 2002, 8, 1548-57.	3.5	22
85	In-crystal affinity ranking of fragment hit compounds reveals a relationship with their inhibitory activities. Journal of Applied Crystallography, 2011, 44, 798-804.	4.5	21
86	Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 553-564.	2.5	21
87	Biochemical and structural characterization of Marinomonas mediterranea d-mannose isomerase Marme_2490 phylogenetically distant from known enzymes. Biochimie, 2018, 144, 63-73.	2.6	21
88	Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. Rna, 2001, 7, 692-701.	3.5	19
89	Crystal structure analysis reveals a novel forkheadâ€associated domain of ESATâ€6 secretion system C protein in <i>Staphylococcus aureus</i> . Proteins: Structure, Function and Bioinformatics, 2007, 69, 659-664.	2.6	19
90	Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism. Biochemical and Biophysical Research Communications, 2011, 411, 433-439.	2.1	19

#	Article	IF	CITATIONS
91	Efficient synthesis of αâ€galactosyl oligosaccharides using a mutant <i>Bacteroides thetaiotaomicron</i> retaining αâ€galactosidase (<i>Bt</i> <scp>GH</scp> 97b). FEBS Journal, 2017, 284, 766-783.	4.7	19
92	The X-ray crystal structure of pyrrolidone-carboxylate peptidase from hyperthermophilic archaea Pyrococcus horikoshii. Journal of Structural and Functional Genomics, 2002, 2, 145-154.	1.2	18
93	Structural evidence for guanidine–protein side chain interactions: crystal structure of CutA from Pyrococcus horikoshii in 3M guanidine hydrochloride. Biochemical and Biophysical Research Communications, 2004, 323, 185-191.	2.1	18
94	Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 32822.	3.3	18
95	Inulin with a low degree of polymerization protects human umbilical vein endothelial cells from hypoxia/reoxygenation-induced injury. Carbohydrate Polymers, 2019, 216, 97-106.	10.2	18
96	Amino Acid Residues in Ribonuclease MC1 from Bitter Gourd Seeds Which Are Essential for Uridine Specificity. Biochemistry, 2001, 40, 524-530.	2.5	17
97	Crystal structure of the functional region of Uroâ€adherence factor A from <i>Staphylococcus saprophyticus</i> reveals participation of the B domain in ligand binding. Protein Science, 2011, 20, 406-416.	7.6	17
98	X-ray structures of eIF5B and the eIF5B–eIF1A complex: the conformational flexibility of eIF5B is restricted on the ribosome by interaction with eIF1A. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3090-3098.	2.5	17
99	Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10520-10525.	7.1	17
100	Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrateâ€binding site in GH13 dextran glucosidase. FEBS Letters, 2015, 589, 484-489.	2.8	17
101	The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus. Communications Biology, 2020, 3, 168.	4.4	17
102	Crystal Structures of the Ribonuclease MC1 Mutants N71T and N71S in Complex with 5â€~-GMP: Structural Basis for Alterations in Substrate Specificityâ€. Biochemistry, 2003, 42, 5270-5278.	2.5	16
103	Structure analysis of geranyl pyrophosphate methyltransferase and the proposed reaction mechanism of SAM-dependent <i>C</i> -methylation. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1558-1569.	2.5	16
104	Cellulose-synthesizing machinery in bacteria. Cellulose, 2022, 29, 2755-2777.	4.9	16
105	Crystal structure of the ATP-binding cassette of multisugar transporter from Pyrococcus horikoshii OT3. Proteins: Structure, Function and Bioinformatics, 2004, 57, 635-638.	2.6	15
106	New algorithm for protein model building: extending a partial model in a map segment. Journal of Applied Crystallography, 2006, 39, 57-63.	4.5	15
107	A novel glycoside hydrolase family 97 enzyme: Bifunctional β-l-arabinopyranosidase/α-galactosidase from Bacteroides thetaiotaomicron. Biochimie, 2017, 142, 41-50.	2.6	15
108	Structure of macrophomate synthase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1187-1197.	2.5	14

#	Article	IF	CITATIONS
109	SCO4008, a Putative TetR Transcriptional Repressor from Streptomyces coelicolor A3(2), Regulates Transcription of sco4007 by Multidrug Recognition. Journal of Molecular Biology, 2013, 425, 3289-3300.	4.2	14
110	Direct interaction between EFL1 and SBDS is mediated by an intrinsically disordered insertion domain. Biochemical and Biophysical Research Communications, 2014, 443, 1251-1256.	2.1	14
111	Production and crystallization of lobster muscle tropomyosin expressed in Sf9 cells. FEBS Letters, 1996, 394, 201-205.	2.8	13
112	Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two <scp>GH</scp> 130 subfamilies. FEBS Letters, 2016, 590, 828-837.	2.8	13
113	Structural basis for recognition of a kink-turn motif by an archaeal homologue of human RNase P protein Rpp38. Biochemical and Biophysical Research Communications, 2016, 474, 541-546.	2.1	13
114	Encapsulation of biomacromolecules by soaking and co-crystallization into porous protein crystals of hemocyanin. Biochemical and Biophysical Research Communications, 2019, 509, 577-584.	2.1	13
115	Structure analysis of PH1161 protein, a transcriptional activator TenA homologue from the hyperthermophilic archaeonPyrococcus horikoshii. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1094-1100.	2.5	12
116	Structural and functional analysis of the TetR-family transcriptional regulator SCO0332 from <i>Streptomyces coelicolor</i> . Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 198-205.	2.5	12
117	Structure of dihydrouridine synthase C (DusC) from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 834-838.	0.7	12
118	Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase. FEBS Letters, 2014, 588, 3213-3217.	2.8	12
119	Production, crystallization, and preliminary Xâ€ray analysis of rabbit skeletal muscle troponin complex consisting of troponin C and fragment (1â€47) of troponin I. Protein Science, 1997, 6, 916-918.	7.6	11
120	Deduced RNA binding mechanism of Thil based on structural and binding analyses of a minimal RNA ligand. Rna, 2009, 15, 1498-1506.	3.5	11
121	Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins. Nucleic Acids Research, 2013, 41, 3635-3643.	14.5	11
122	Structural Advantage of Sugar Beet α-Glucosidase to Stabilize the Michaelis Complex with Long-chain Substrate. Journal of Biological Chemistry, 2015, 290, 1796-1803.	3.4	11
123	Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein. Science Advances, 2016, 2, e1501397.	10.3	11
124	Crystal structure of human p120 homologue protein PH1374 from Pyrococcus horikoshii. Proteins: Structure, Function and Bioinformatics, 2004, 54, 814-816.	2.6	10
125	Molecular properties of two proteins homologous to PduO-type ATP:cob(I)alamin adenosyltransferase from Sulfolobus tokodaii. Proteins: Structure, Function and Bioinformatics, 2007, 68, 446-457.	2.6	10
126	The structures of transcription factor CGL2947 from <i>Corynebacterium glutamicum</i> in two crystal forms: A novel homodimer assembling and the implication for effectorâ€binding mode. Protein Science, 2007, 16, 1878-1886.	7.6	9

#	Article	IF	CITATIONS
127	Crystallization and preliminary X-ray crystallographic study of a 3.8-MDa respiratory supermolecule hemocyanin. Journal of Structural Biology, 2015, 190, 379-382.	2.8	9
128	Crystal structure of hypothetical protein PH0828 fromPyrococcus horikoshii. Proteins: Structure, Function and Bioinformatics, 2004, 57, 862-865.	2.6	8
129	Flash-cooling of macromolecular crystals in a capillary to overcome increased mosaicity. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 39-45.	2.5	8
130	The structure ofPyrococcus horikoshii2′-5′ RNA ligase at 1.94â€Ã resolution reveals a possible open forn with a wider active-site cleft. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1196-1200.	ו 0.7	8
131	Crystal structure of an archaeal Ski2p-like protein from Pyrococcus horikoshii OT3. Protein Science, 2007, 17, 136-145.	7.6	8
132	In-crystal chemical ligation for lead compound generation. Journal of Applied Crystallography, 2010, 43, 1329-1337.	4.5	8
133	Molecular Dynamics Simulation of Cellulose Synthase Subunit D Octamer with Cellulose Chains from Acetic Acid Bacteria: Insight into Dynamic Behaviors and Thermodynamics on Substrate Recognition. Journal of Chemical Theory and Computation, 2021, 17, 488-496.	5.3	8
134	Crystallization and preliminary X-ray diffraction study of the catalytic subunit of archaeal H+-transporting ATP synthase fromPyrococcus horikoshiiOT3. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1484-1486.	2.5	7
135	Absolute configuration of the hydroxyfarnesylethyl group of haem A, determined by X-ray structural analysis of bovine heart cytochromecoxidase using methods applicable at 2.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1373-1377.	2.5	7
136	Structural analysis of the transcriptional regulator homolog protein from Pyrococcus horikoshii OT3. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1084-1086.	2.6	7
137	Electron microscopy and computational studies of Ebh, a giant cell-wall-associated protein from Staphylococcus aureus. Biochemical and Biophysical Research Communications, 2008, 376, 261-266.	2.1	7
138	Flavin-binding of azoreductase: Direct evidences for dual-binding property of apo-azoreductase with FMN and FAD. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 204-208.	1.8	7
139	New model-fitting and model-completion programs for automated iterative nucleic acid refinement. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1171-1179.	2.5	7
140	Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from <i>Streptomyces coelicolor</i> A3(2). FEBS Letters, 2014, 588, 4311-4318.	2.8	7
141	Crystal structures clarify cofactor binding of plant tyrosine decarboxylase. Biochemical and Biophysical Research Communications, 2020, 523, 500-505.	2.1	7
142	Expression, purification, crystallization and preliminary X-ray diffraction analysis of the human calcium-binding protein MRP14 (S100A9). Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1174-1176.	2.5	6
143	Crystallization and preliminary X-ray analysis of α-xylosidase fromEscherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 178-179.	0.7	6
144	Structural basis for tRNA-dependent cysteine biosynthesis. Nature Communications, 2017, 8, 1521.	12.8	6

#	Article	IF	CITATIONS
145	Crystallization and preliminary X-ray diffraction studies of monomeric isocitrate dehydrogenase by the MAD method using Mn atoms. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1682-1685.	2.5	5
146	Crystal structure of conserved protein PH1136 from Pyrococcus horikoshii. Proteins: Structure, Function and Bioinformatics, 2004, 55, 210-213.	2.6	5
147	Crystallization and preliminary crystallographic analysis of the cellulose biosynthesis-related protein CMCax fromAcetobacter xylinum. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 252-254.	0.7	5
148	Crystallization and preliminary X-ray studies of azoreductases from <i>Bacillus</i> sp. B29. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 503-505.	0.7	5
149	Crystallization and preliminary X-ray crystallographic study of a methyltransferase involved in 2-methylisoborneol biosynthesis in <i>Streptomyces lasaliensis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 417-420.	0.7	5
150	Crystallographic study of the 2-thioribothymidine-synthetic complex TtuA–TtuB from <i>Thermus thermophilus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 777-781.	0.8	5
151	Crystallographic analysis of Eisenia hydrolysis-enhancing protein using a long wavelength for native-SAD phasing. Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 20-24.	0.8	5
152	A solution-free crystal-mounting platform for native SAD. Acta Crystallographica Section D: Structural Biology, 2020, 76, 938-945.	2.3	5
153	The Structure of the Archaebacterial Ribosomal Protein S7 and Its Possible Interaction with 16S rRNA. Journal of Biochemistry, 2001, 130, 695-701.	1.7	4
154	Crystal structure of PH0010 from Pyrococcus horikoshii, which is highly homologous to human AMMECR 1C-terminal region. Proteins: Structure, Function and Bioinformatics, 2004, 58, 501-503.	2.6	4
155	Crystal structure of the PH1932 protein, a unique archaeal ArsR type wingedâ€HTH transcription factor from <i>Pyrococcus horikoshii</i> OT3. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1631-1634.	2.6	4
156	Purification, Crystallization and Preliminary X-Ray Studies of AxCesD Required for Efficient Cellulose Biosynthesis in Acetobacter xylinum. Protein and Peptide Letters, 2008, 15, 115-117.	0.9	4
157	Preliminary X-ray crystallographic study of the receptor-binding domain of the D/C mosaic neurotoxin fromClostridium botulinum. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 608-610.	0.7	4
158	Crystal structure analysis, overexpression and refolding behaviour of a DING protein with singleÂmutation. Journal of Synchrotron Radiation, 2013, 20, 854-858.	2.4	4
159	Crystallization and preliminary X-ray crystallographic analysis of α-glucosidase HaG fromHalomonassp. strain H11. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 464-466.	0.8	4
160	Crystallization and preliminary X-ray crystallographic analysis of ribosome assembly factors: the Rpf2–Rrs1 complex. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1649-1652.	0.8	4
161	Flexible NAD+ Binding in Deoxyhypusine Synthase Reflects the Dynamic Hypusine Modification of Translation Factor IF5A. International Journal of Molecular Sciences, 2020, 21, 5509.	4.1	4
162	Crystal structure of the putative RNA methyltransferase PH1948 from Pyrococcus horikoshii, in complex with the copurified S-adenosyl-L-homocysteine. Proteins: Structure, Function and Bioinformatics, 2005, 61, 1141-1145.	2.6	3

#	Article	IF	CITATIONS
163	Structural basis of CoA recognition by the Pyrococcus single-domain CoA-binding proteins. Journal of Structural and Functional Genomics, 2007, 7, 119-129.	1.2	3
164	Cloning, expression, purification and preliminary crystallographic studies of the adenylate/uridylate-rich element-binding protein HuR complexed with its target RNA. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 285-287.	0.7	3
165	Crystallization and preliminary X-ray crystallographic analysis of eIF5BΔN and the eIF5BΔN–eIF1AΔN complex. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 730-733.	0.7	3
166	The binding mechanism of elF2Î ² with its partner proteins, elF5 and elF2Bε. Biochemical and Biophysical Research Communications, 2012, 423, 515-519.	2.1	3
167	Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): Regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape. Biochemical and Biophysical Research Communications, 2013, 435, 28-33.	2.1	3
168	Crystallization and preliminary X-ray crystallographic analysis of the functional form of BinB binary toxin fromBacillus sphaericus. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 170-173.	0.7	3
169	Expression, purification, crystallization and preliminary X-ray crystallographic study of the nucleocapsid protein ofTomato spotted wilt virus. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 700-703.	0.7	3
170	Crystallization and preliminary X-ray crystallographic analysis of a bacterial Asn-transamidosome. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 790-793.	0.8	3
171	Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNACyssynthesis. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 569-572.	0.8	3
172	Biophysical research in Hokkaido University, Japan. Biophysical Reviews, 2020, 12, 233-236.	3.2	3
173	Crystal Structure of a Putative Methyltransferase SAV1081 from Staphylococcus aureus. Protein and Peptide Letters, 2013, 20, 530-537.	0.9	3
174	Substrate specificity of glycoside hydrolase family 1 β-glucosidase AtBGlu42 from <i>Arabidopsis thaliana</i> and its molecular mechanism. Bioscience, Biotechnology and Biochemistry, 2022, 86, 231-245.	1.3	3
175	Crystallization and Preliminary X-Ray Structure Analysis of 1-Aminocyclopropane-1-carboxylic Acid Deaminase. Journal of Structural Biology, 1994, 113, 251-253.	2.8	2
176	Optimization of the energy constant of the methionine Sδ—Câ^Šbond forX-PLORrefinement of protein structure. Journal of Applied Crystallography, 2001, 34, 80-81.	4.5	2
177	The MinD protein from the hyperthermophilic archaeonPyrococcus horikoshii: crystallization and preliminary X-ray analysis. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 896-897.	2.5	2
178	Crystal structure of the hypothetical protein ST2072 from Sulfolobus tokodaii. Proteins: Structure, Function and Bioinformatics, 2005, 61, 1127-1131.	2.6	2
179	Crystallization and Preliminary X-Ray Studies of the DNA-Binding Domain of Hepatocyte Nuclear Factor-6α Complexed with DNA. Protein and Peptide Letters, 2006, 13, 531-533.	0.9	2
180	Crystallization and preliminary X-ray crystallographic analysis of dihydrouridine synthase fromThermus thermophilusand its complex with tRNA. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 685-688.	0.7	2

#	Article	IF	CITATIONS
181	Preliminary X-ray crystallographic study of staphylococcal α-haemolysin monomer. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 868-870.	0.7	2
182	Anchoring protein crystals to mounting loops with hydrogel using inkjet technology. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2794-2799.	2.5	2
183	Neutron crystallographic study of heterotrimeric glutamine amidotransferase CAB. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 193-196.	0.8	2
184	Crystallization of 1-Aminocyclopropane-1- Carboxylic Acid Deaminase from Yeast. Protein and Peptide Letters, 1995, 2, 305-306.	0.9	2
185	Crystallization and Preliminary X-Ray Studies of the Unliganded Wild-Type Bovine Thrombin. Protein and Peptide Letters, 2007, 14, 923-924.	0.9	1
186	Structure of protein PH0536 from <i>Pyrococcus horikoshii</i> at 1.7 Ã resolution reveals a novel assembly of an oligonucleotide/oligosaccharideâ€binding fold and an αâ€helical bundle. Proteins: Structure, Function and Bioinformatics, 2008, 71, 503-508.	2.6	1
187	Crystal Structure of SCO6571 from Streptomyces coelicolor A3(2). Protein and Peptide Letters, 2008, 15, 709-712.	0.9	1
188	Crystallization and preliminary X-ray structure analysis of human ribosomal protein L30e. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1516-1518.	0.7	1
189	Dynamic control of microbial movement by photoswitchable ATP antagonists. Chemistry - A European Journal, 2022, , .	3.3	1
190	S2c1-2 Mechanistic insights into RNA dependent transamidation by GatCAB(S2-c1: "Crystallographic) Tj ETQq0 (0 0 rgBT /0 0.1	Overlock 10 T 0
191	2P034 Crystal structure of Atlantic cod trypsin(29. Protein structure and dynamics (II),Poster) Tj ETQq1 1 0.784	814 rgBT / 0.P	Overlock 10
192	S06A1 Mechanistic insight into RNA acetylation to maintain the decoding fidelity in bacteria(Structural Biology of ncRNA Processing and Function). Seibutsu Butsuri, 2007, 47, S8.	0.1	0
193	2P-029 Structural analysis of eukaryotic translation initiation factor eIF5B(The 46th Annual Meeting) Tj ETQq1 1	0.784314 0.1	rgBT /Overic
194	Structure Determination Software for Macromolecular X-Ray Crystallography. Springer Protocols, 2016, , 293-314.	0.3	0
195	The pH-dependent conformational change of eukaryotic translation initiation factor 5: Insights into partner-binding manner. Biochemical and Biophysical Research Communications, 2019, 519, 186-191.	2.1	0
196	Cellulose Synthesis in an Acetic Acid Bacterium: Closing in on the Secret Behind an Ultra-Precision Nanomachine Spinning a Cellulose Nanofiber. Kagaku To Seibutsu, 2020, 58, 453-460.	0.0	0
197	Structural insights reveal the second base catalyst of isomaltose glucohydrolase. FEBS Journal, 2021,	4.7	0
198	Structural snapshot of a glycoside hydrolase family 8 endo-β-1,4-glucanase capturing the state after cleavage of the scissile bond. Acta Crystallographica Section D: Structural Biology, 2022, 78, 228-237.	2.3	0