Ibraihm H A Badr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986786/publications.pdf

Version: 2024-02-01

279798 315739 1,479 49 23 38 citations h-index g-index papers 50 50 50 1350 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Selective Optical Fluoride Ion Sensor with Submicromolar Detection Limit Based on Aluminum(III) Octaethylporphyrin in Thin Polymeric Film. Journal of the American Chemical Society, 2005, 127, 5318-5319.	13.7	121
2	Development of a Fully Integrated Analysis System for Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics. Analytical Chemistry, 2001, 73, 3940-3946.	6. 5	112
3	Mercuracarborand "Anti-Crown Ether―Based Chloride-Sensitive Liquid/Polymeric Membrane Electrodes. Analytical Chemistry, 1999, 71, 1371-1377.	6.5	104
4	Tripodal Ionophore with Sulfate Recognition Properties for Anion-Selective Electrodes. Analytical Chemistry, 2000, 72, 5295-5299.	6. 5	95
5	Potentiometric Anion Selectivity of Polymer Membranes Doped with Palladium Organophosphine Complex. Analytical Chemistry, 1995, 67, 2613-2618.	6.5	82
6	Fluorescent Ion-Selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform. Analytical Chemistry, 2002, 74, 5569-5575.	6. 5	77
7	A Selective Optical Sensor Based on [9]Mercuracarborand-3, a New Type of Ionophore with a Chloride Complexing Cavity. Analytical Chemistry, 2000, 72, 4249-4254.	6.5	57
8	Metalloporphyrin-based polymer membrane electrode with high selectivity for 2-hydroxybenzhydroxamate. Analytica Chimica Acta, 1996, 321, 11-19.	5.4	48
9	Fluoride-Selective Optical Sensor Based on Aluminum(III)â^'Octaethylporphyrin in Thin Polymeric Film: Further Characterization and Practical Application. Analytical Chemistry, 2005, 77, 6719-6728.	6. 5	46
10	Green Fluorescent Protein in the Design of a Living Biosensing System forl-Arabinose. Analytical Chemistry, 1999, 71, 763-768.	6. 5	45
11	Novel solid-state ammonium ion potentiometric sensor based on zirconium titanium phosphate ion exchanger. Analytica Chimica Acta, 2001, 427, 21-28.	5.4	44
12	Improving the Blood Compatibility of Ion-Selective Electrodes by Employing Poly(MPC-co-BMA), a Copolymer Containing Phosphorylcholine, as a Membrane Coating. Analytical Chemistry, 2002, 74, 3644-3648.	6. 5	42
13	Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film. Arabian Journal of Chemistry, 2018, 11, 171-180.	4.9	35
14	Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 97, 388-396.	3.9	33
15	A Novel Poly(vinyl chloride) Matrix Membrane Sensor for Batch and Flow-Injection Determinations of Thiocyanate, Cyanide and Some Metal Ions. Analytical Sciences, 2009, 25, 911-917.	1.6	31
16	Novel response mechanism and application of sulfite sensitive polymeric membrane electrode based on dithiocarbamate complexes of mercury(II). Analytica Chimica Acta, 1995, 310, 211-221.	5.4	29
17	Reducing the Thrombogenicity of Ion-Selective Electrode Membranes through the Use of a Silicone-Modified Segmented Polyurethane. Analytical Chemistry, 2001, 73, 5328-5333.	6.5	29
18	Flow injection analysis of sulfite ion with a potentiometric titanium phosphate–epoxy based membrane sensor. Talanta, 2001, 54, 773-782.	5 . 5	29

#	Article	IF	CITATIONS
19	Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film. Analytica Chimica Acta, 2005, 553, 169-176.	5.4	28
20	Sensitive and Green Method for Determination of Chemical Oxygen Demand Using a Nanoâ€copper Based Electrochemical Sensor. Electroanalysis, 2017, 29, 2401-2409.	2.9	27
21	Electrochemical Assay of Proteinase Inhibitors Using Polycation-Sensitive Membrane Electrode Detection. Analytical Biochemistry, 1997, 250, 74-81.	2.4	26
22	Potentiometric Flow Injection Analysis of Anionic Surfactants in Industrial Products and Wastes. Mikrochimica Acta, 2004, 144, 263-269.	5.0	26
23	Glassy Carbon Electrode Electromodification in the Presence of Organic Monomers: Electropolymerization versus Activation. Analytical Chemistry, 2020, 92, 7947-7954.	6.5	26
24	Hydrogen sulfite optical sensor based on a lipophilic guanidinium ionophore. Analytica Chimica Acta, 1999, 388, 63-69.	5.4	25
25	Determination of Carrageenan in Food Products Using Potentiometric Polyion Sensors. Electroanalysis, 2002, 14, 439-444.	2.9	24
26	Synthesis and Evaluation of a Bis(crown ether) Ionophore with a Conformationally Constrained Bridge in Ion-Selective Electrodes Analytical Sciences, 1998, 14, 169-173.	1.6	19
27	Potentiometric anion selectivity of polymer-membrane electrodes based on cobalt, chromium, and aluminum salens. Analytica Chimica Acta, 2006, 570, 176-185.	5.4	19
28	A New Neutral Carrier for Silver Ions Based on a Bis(Thiothiazole) Derivative and its Evaluation in Membrane Electrodes. Mikrochimica Acta, 2005, 149, 87-94.	5.0	18
29	Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan. Carbohydrate Polymers, 2014, 99, 783-790.	10.2	18
30	Potentiometric Determination of Ciprofloxacin in Physiological Fluids Using Carbon Paste and Nanoâ€Composite Carbon Paste Electrodes. Electroanalysis, 2017, 29, 1172-1179.	2.9	15
31	Cyanex based uranyl sensitive polymeric membrane electrodes. Talanta, 2014, 118, 147-155.	5.5	14
32	Potentiometric Anion Selectivity and Analytical Applications of Polymer Membrane Electrodes Based on Novel Mn(III)―and Mn(IV)â€5alophen Complexes. Electroanalysis, 2016, 28, 2922-2929.	2.9	14
33	A Sensitive and Green Method for Determination of Catechol Using Multi-Walled Carbon Nanotubes/Poly(1,5-diaminonaphthalene) Composite Film Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2019, 166, B1441-B1451.	2.9	14
34	A Novel Neutral Carrier for Uranyl Ion Based on a Commercially Available Aminophosphate Derivative: Evaluation in Membrane Electrodes and Nuclear Safeguards Applications. Electroanalysis, 2012, 24, 2309-2316.	2.9	12
35	Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose. Carbohydrate Polymers, 2015, 134, 687-694.	10.2	12
36	NITRITE-SELECTIVE OPTICAL SENSORS BASED ON ORGANOPALLADIUM IONOPHORES. Analytical Letters, 2001, 34, 2019-2034.	1.8	11

#	Article	IF	CITATIONS
37	Response behavior of sodium-selective electrodes modified by surface attachment of the anticoagulant polysaccharides heparin and chondroitin sulfate. Talanta, 2005, 65, 261-266.	5. 5	11
38	Polymeric Membrane Ion-Selective Electrodes Based on Molecular Asterisk Ionophores. Electroanalysis, 2002, 14, 1419-1425.	2.9	10
39	The Enhancement of Pyrene Biodegradation by Assembling MFe3O4Nano-sorbents on the Surface of Microbial Cells. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 1931-1937.	2.3	9
40	Development of potentiometric sensors for the selective determination of UO2 2+ ions. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 469-477.	1.5	9
41	Epoxy Matrix Membrane Potentiometric Sensor Based on Zirconium Titanium Phosphate Ion Exchanger for Flow Injection Analysis of Nitrite. Electroanalysis, 2000, 12, 1312-1317.	2.9	6
42	Electrochemical Assay for Highly Charged Polyamino Acids: Application to Polyamino Acid Functionalized Microfiltration Membranes. Electroanalysis, 2000, 12, 1368-1372.	2.9	6
43	PVC Membrane electrodes for manual and flow-injection determination of tetraphenylborate: Applications to separate and sequential titrations of some metal ions. Talanta, 1994, 41, 523-530.	5 . 5	5
44	New Potentiometric Sensors for Picrate Determination Using Flowâ€Through System: Application to Kinetic Assessment of Se(IV). Electroanalysis, 2013, 25, 793-801.	2.9	5
45	Simple spectrofluorimetric methods for determination of veterinary antibiotic drug (apramycin) Tj ETQq1 1 0.784 Biomolecular Spectroscopy, 2020, 224, 117395.	4314 rgBT 3.9	Overlock 10 5
46	Novel Potentiometric Sensor for the Selective Determination of Cefotaxime Sodium and Its Application to Pharmaceutical Analysis. IEEE Sensors Journal, 2020, 20, 3415-3422.	4.7	3
47	Correlating the potentiometric selectivity of cyclosporin-based electrodes with binding patterns obtained from electrospray ionization-mass spectrometry. Analyst, The, 2017, 142, 3241-3249.	3.5	2
48	Kinetics of chlorine isotope exchange reaction between sodium chloride-36 and triphenyltin chloride in mixed solvents. Journal of Radioanalytical and Nuclear Chemistry, 1992, 162, 71-78.	1.5	0
49	Kinetics of chlorine isotope exchange reaction between sodium chloride-36 and triphenyltin chloride in mixed solvents. Journal of Radioanalytical and Nuclear Chemistry, 1992, 164, 141-151.	1.5	0