Robert A Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986542/publications.pdf

Version: 2024-02-01

		20817	25787
109	13,571	60	108
papers	citations	h-index	g-index
110	110	110	8838
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
2	Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4931-4941.	7.1	70
3	The Structure, Function, and Pathobiology of the Influenza A and B Virus Ion Channels. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038505.	6.2	14
4	Repurposing Papaverine as an Antiviral Agent against Influenza Viruses and Paramyxoviruses. Journal of Virology, 2020, 94, .	3 . 4	21
5	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
6	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
7	ICTV Virus Taxonomy Profile: Paramyxoviridae. Journal of General Virology, 2019, 100, 1593-1594.	2.9	194
8	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
9	Problems of classification in the family Paramyxoviridae. Archives of Virology, 2018, 163, 1395-1404.	2.1	30
10	Structure of the Paramyxovirus Parainfluenza Virus 5 Nucleoprotein in Complex with an Amino-Terminal Peptide of the Phosphoprotein. Journal of Virology, 2018, 92, .	3.4	30
11	Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nature Microbiology, 2017, 2, 16272.	13.3	65
12	Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. Journal of Virology, 2017, 91, .	3.4	49
13	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
14	Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 2017, 8, 781.	12.8	38
15	Editorial overview: Virus structure and functions. Current Opinion in Virology, 2017, 24, ix.	5.4	1
16	Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3844-51.	7.1	4
17	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
18	Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion. Journal of Virology, 2016, 90, 9172-9181.	3.4	17

#	Article	IF	CITATIONS
19	Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity. Journal of Virology, 2016, 90, 7778-7788.	3.4	16
20	Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1056-1061.	7.1	58
21	A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV. PLoS ONE, 2016, 11, e0155917.	2.5	14
22	On the Stability of Parainfluenza Virus 5 F Proteins. Journal of Virology, 2015, 89, 3438-3441.	3.4	6
23	Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1792-9.	7.1	91
24	Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Virology, 2015, 479-480, 518-531.	2.4	96
25	Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12504-12509.	7.1	15
26	Influenza A Virus Uses Intercellular Connections To Spread to Neighboring Cells. Journal of Virology, 2015, 89, 1537-1549.	3.4	110
27	The Innate Immune Sensor LGP2 Activates Antiviral Signaling by Regulating MDA5-RNA Interaction and Filament Assembly. Molecular Cell, 2014, 55, 771-781.	9.7	208
28	Activation of paramyxovirus membrane fusion and virus entry. Current Opinion in Virology, 2014, 5, 24-33.	5.4	120
29	Probing the Functions of the Paramyxovirus Glycoproteins F and HN with a Panel of Synthetic Antibodies. Journal of Virology, 2014, 88, 11713-11725.	3.4	9
30	Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2596-605.	7.1	44
31	Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells. Journal of Virology, 2014, 88, 3925-3941.	3.4	76
32	Viral Membrane Scission. Annual Review of Cell and Developmental Biology, 2013, 29, 551-569.	9.4	46
33	Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability. Journal of Virology, 2013, 87, 13520-13531.	3.4	62
34	Structure of the Parainfluenza Virus 5 (PIV5) Hemagglutinin-Neuraminidase (HN) Ectodomain. PLoS Pathogens, 2013, 9, e1003534.	4.7	61
35	The Amphipathic Helix of Influenza A Virus M2 Protein Is Required for Filamentous Bud Formation and Scission of Filamentous and Spherical Particles. Journal of Virology, 2013, 87, 9973-9982.	3.4	69
36	Structure of the Ulster Strain Newcastle Disease Virus Hemagglutinin-Neuraminidase Reveals Auto-Inhibitory Interactions Associated with Low Virulence. PLoS Pathogens, 2012, 8, e1002855.	4.7	57

#	Article	IF	CITATIONS
37	The Paramyxovirus Fusion Protein C-Terminal Region: Mutagenesis Indicates an Indivisible Protein Unit. Journal of Virology, 2012, 86, 2600-2609.	3.4	21
38	Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nature Structural and Molecular Biology, 2012, 19, 461-463.	8.2	66
39	Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16672-16677.	7.1	80
40	Reversible Inhibition of Fusion Activity of a Paramyxovirus Fusion Protein by an Engineered Disulfide Bond in the Membrane-Proximal External Region. Journal of Virology, 2012, 86, 12397-12401.	3.4	12
41	Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2625-34.	7.1	84
42	Influenza virus assembly and budding. Virology, 2011, 411, 229-236.	2.4	514
43	Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin. Virology, 2011, 417, 50-56.	2.4	58
44	Comparison of differing cytopathic effects in human airway epithelium of parainfluenza virus 5 (W3A), parainfluenza virus type 3, and respiratory syncytial virus. Virology, 2011, 421, 67-77.	2.4	41
45	Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20992-20997.	7.1	51
46	Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14920-14925.	7.1	147
47	Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion. Journal of Virology, 2011, 85, 12855-12866.	3.4	72
48	Structure of the Newcastle disease virus F protein in the post-fusion conformation. Virology, 2010, 402, 372-379.	2.4	77
49	Analysis of parainfluenza virus-5 hemagglutinin-neuraminidase protein mutants that are blocked in internalization and degradation. Virology, 2010, 406, 189-201.	2.4	7
50	A Role for Caveolin 1 in Assembly and Budding of the Paramyxovirus Parainfluenza Virus 5. Journal of Virology, 2010, 84, 9749-9759.	3.4	30
51	Influenza Virus M2 Ion Channel Protein Is Necessary for Filamentous Virion Formation. Journal of Virology, 2010, 84, 5078-5088.	3.4	161
52	Swine-origin Influenza Virus and the 2009 Pandemic. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 295-296.	5 . 6	10
53	Influenza Virus M2 Protein Mediates ESCRT-Independent Membrane Scission. Cell, 2010, 142, 902-913.	28.9	440
54	Influenza virus budding does not require a functional AAA+ ATPase, VPS4. Virus Research, 2010, 153, 58-63.	2.2	30

#	Article	IF	CITATIONS
55	Bimolecular Complementation of Paramyxovirus Fusion and Hemagglutinin-Neuraminidase Proteins Enhances Fusion: Implications for the Mechanism of Fusion Triggering. Journal of Virology, 2009, 83, 10857-10868.	3.4	84
56	Functional Analysis of the Transmembrane Domain in Paramyxovirus F Protein-Mediated Membrane Fusion. Journal of Molecular Biology, 2009, 386, 14-36.	4.2	54
57	Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers. Protein Science, 2009, 12, 2597-2605.	7.6	119
58	Mechanisms for enveloped virus budding: Can some viruses do without an ESCRT?. Virology, 2008, 372, 221-232.	2.4	257
59	Domain architecture and oligomerization properties of the paramyxovirus PIV 5 hemagglutinin-neuraminidase (HN) protein. Virology, 2008, 378, 282-291.	2.4	43
60	The Influenza Virus M2 Protein Cytoplasmic Tail Interacts with the M1 Protein and Influences Virus Assembly at the Site of Virus Budding. Journal of Virology, 2008, 82, 10059-10070.	3.4	220
61	The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. Journal of General Virology, 2008, 89, 3097-3101.	2.9	21
62	Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Particles. Journal of Virology, 2007, 81, 7111-7123.	3.4	267
63	Structural basis of viral invasion: lessons from paramyxovirus F. Current Opinion in Structural Biology, 2007, 17, 427-436.	5 . 7	256
64	Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature, 2006, 439, 38-44.	27.8	374
65	Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures. Virology, 2006, 344, 30-37.	2.4	216
66	Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus–cell fusion. Virology, 2006, 355, 203-212.	2.4	22
67	Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17903-17908.	7.1	86
68	Analysis of the pH Requirement for Membrane Fusion of Different Isolates of the Paramyxovirus Parainfluenza Virus 5. Journal of Virology, 2006, 80, 3071-3077.	3.4	17
69	Structural Studies of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Tetramer in Complex with Its Receptor, Sialyllactose. Structure, 2005, 13, 803-815.	3.3	187
70	Influenza virus assembly and budding in raft-derived microdomains: A quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology, 2005, 342, 215-227.	2.4	193
71	Evidence for a New Viral Late-Domain Core Sequence, FPIV, Necessary for Budding of a Paramyxovirus. Journal of Virology, 2005, 79, 2988-2997.	3.4	141
72	Influenza Virus Hemagglutinin (H3 Subtype) Requires Palmitoylation of Its Cytoplasmic Tail for Assembly: M1 Proteins of Two Subtypes Differ in Their Ability To Support Assembly. Journal of Virology, 2005, 79, 13673-13684.	3.4	122

#	Article	IF	Citations
73	Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9288-9293.	7.1	288
74	Influenza Virus Assembly and Budding at the Viral Budozone. Advances in Virus Research, 2005, 64, 383-416.	2.1	91
75	Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9217-9222.	7.1	78
76	Conserved Glycine Residues in the Fusion Peptide of the Paramyxovirus Fusion Protein Regulate Activation of the Native State. Journal of Virology, 2004, 78, 13727-13742.	3.4	66
77	A class act. Nature, 2004, 427, 307-308.	27.8	126
78	Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14610-14617.	7.1	323
79	A dual-functional paramyxovirus F protein regulatory switch segment. Journal of Cell Biology, 2003, 163, 363-374.	5.2	100
80	Roles for the Cytoplasmic Tails of the Fusion and Hemagglutinin-Neuraminidase Proteins in Budding of the Paramyxovirus Simian Virus 5. Journal of Virology, 2002, 76, 9284-9297.	3.4	64
81	Requirements for Budding of Paramyxovirus Simian Virus 5 Virus-Like Particles. Journal of Virology, 2002, 76, 3952-3964.	3.4	129
82	Paramyxovirus Fusion (F) Protein: A Conformational Change on Cleavage Activation. Virology, 2001, 281, 138-150.	2.4	53
83	Virus Membrane Fusion Proteins: Biological Machines that Undergo a Metamorphosis. Bioscience Reports, 2000, 20, 597-612.	2.4	117
84	The Cytoplasmic Tails of the Influenza Virus Spike Glycoproteins Are Required for Normal Genome Packaging. Virology, 2000, 269, 325-334.	2.4	79
85	Fusion Protein of the Paramyxovirus SV5: Destabilizing and Stabilizing Mutants of Fusion Activation. Virology, 2000, 270, 17-30.	2.4	122
86	Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins. Journal of Virology, 2000, 74, 4634-4644.	3.4	343
87	Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins. Journal of Virology, 2000, 74, 4634-4644.	3.4	30
88	The Signal for Clathrin-Mediated Endocytosis of the Paramyxovirus SV5 HN Protein Resides at the Transmembrane Domain–Ectodomain Boundary Region. Virology, 1999, 262, 79-92.	2.4	12
89	The Influenza Virus M2Ion Channel Protein: Probing the Structure of the Transmembrane Domain in Intact Cells by Using Engineered Disulfide Cross-Linking. Virology, 1999, 254, 196-209.	2.4	65
90	The paramyxovirus fusion protein forms an extremely stable core trimer: structural parallels to influenza virus haemagglutinin and HIV-1 gp41. Molecular Membrane Biology, 1999, 16, 11-19.	2.0	39

#	Article	IF	Citations
91	Structural Basis for Paramyxovirus-Mediated Membrane Fusion. Molecular Cell, 1999, 3, 309-319.	9.7	371
92	Involvement of the Cytoplasmic Domain of the Hemagglutinin-Neuraminidase Protein in Assembly of the Paramyxovirus Simian Virus 5. Journal of Virology, 1999, 73, 8703-8712.	3.4	62
93	Cell Surface Expression of Biologically Active Influenza C Virus HEF Glycoprotein Expressed from cDNA. Journal of Virology, 1999, 73, 8808-8812.	3.4	14
94	A Core Trimer of the Paramyxovirus Fusion Protein: Parallels to Influenza Virus Hemagglutinin and HIV-1 gp41. Virology, 1998, 248, 20-34.	2.4	166
95	The Paramyxovirus SV5 Small Hydrophobic (SH) Protein Is Not Essential for Virus Growth in Tissue Culture Cells. Virology, 1998, 250, 30-40.	2.4	56
96	The Role of the Cytoplasmic Tail Region of Influenza Virus Hemagglutinin in Formation and Growth of Fusion Pores. Virology, 1997, 235, 118-128.	2.4	63
97	Paramyxovirus Fusion (F) Protein and Hemagglutinin–Neuraminidase (HN) Protein Interactions: Intracellular Retention of F and HN Does Not Affect Transport of the Homotypic HN or F Protein. Virology, 1997, 237, 1-9.	2.4	37
98	Recovery of Infectious SV5 from Cloned DNA and Expression of a Foreign Gene. Virology, 1997, 237, 249-260.	2.4	195
99	A Glycine to Alanine Substitution in the Paramyxovirus SV5 Fusion Peptide Increases the Initial Rate of Fusion. Virology, 1997, 238, 283-290.	2.4	13
100	Characterization of the Membrane Association of the Influenza Virus Matrix Protein in Living Cells. Virology, 1996, 225, 255-266.	2.4	99
101	Individual Roles of N-Linked Oligosaccharide Chains in Intracellular Transport of the Paramyxovirus SV5 Fusion Protein. Virology, 1995, 209, 250-256.	2.4	35
102	Folding and Assembly of Viral Membrane Proteins. Virology, 1993, 193, 545-562.	2.4	502
103	Paramyxovirus Fusion: A Hypothesis for Changes. Virology, 1993, 197, 1-11.	2.4	445
104	Influenza virus M2 protein has ion channel activity. Cell, 1992, 69, 517-528.	28.9	1,142
105	The Nonstructural Proteins of Paramyxoviruses. , 1991, , 181-214.		16
106	Folding and oligomerization properties of a soluble and secreted form of the paramyxovirus hemagglutinin-neuraminidase glycoprotein. Virology, 1990, 178, 498-508.	2.4	31
107	Unwinding with a vengeance. Nature, 1989, 337, 19-20.	27.8	27
108	Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor. Cell, 1987, 48, 441-452.	28.9	105

#	Article	IF	CITATIONS
109	Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell, 1985, 40, 627-633.	28.9	585