Dalibor Petković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7985222/publications.pdf

Version: 2024-02-01

128 papers 6,045 citations

66343 42 h-index 70 g-index

176 all docs

176 docs citations

176 times ranked

4427 citing authors

#	Article	IF	CITATIONS
1	Appraisal of information system for evaluation of kinetic parameters of biomass oxidation. Biomass Conversion and Biorefinery, 2023, 13, 777-785.	4.6	6
2	E-monitoring of in vitro culture parameters for prediction of maximal biomass yields. Biomass Conversion and Biorefinery, 2022, 12, 5677-5685.	4.6	1
3	Adaptive neuro fuzzy predictive models of agricultural biomass standard entropy and chemical exergy based on principal component analysis. Biomass Conversion and Biorefinery, 2022, 12, 2835-2845.	4.6	9
4	Appraisal of information and communications technologies on the teaching process by neuro fuzzy logic. Computer Applications in Engineering Education, 2022, 30, 779-802.	3.4	12
5	Optimization of a plastic optical fiber based sensor for dye sensing coupled with an adapted neuro-fuzzy inference system. Applied Optics, 2022, 61, 2715.	1.8	1
6	Application of hybrid learning algorithm for optimization of LED lens design. Multimedia Tools and Applications, 2022, 81, 40469-40488.	3.9	1
7	E-learning perspectives in higher education institutions. Technological Forecasting and Social Change, 2021, 166, 120618.	11.6	39
8	Estimation of optimal fertilizers for optimal crop yield by adaptive neuro fuzzy logic. Rhizosphere, 2021, 18, 100358.	3.0	33
9	Neuro fuzzy estimation of the most influential parameters for Kusum biodiesel performance. Energy, 2021, 229, 120621.	8.8	25
10	Evaluation and monitoring of impact resistance of fiber reinforced concrete by adaptive neuro fuzzy algorithm. Structures, 2021, 34, 3750-3756.	3.6	17
11	Evaluation of optimal economic and technical indicators for agriculture stock trading decision. , 2021, 18, 124-140.		2
12	Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques. Engineering With Computers, 2020, 36, 1347-1354.	6.1	19
13	Selection of the most influential parameters on vectorial crystal growth of highly oriented vertically aligned carbon nanotubes by adaptive neuro-fuzzy technique. International Journal of Hydromechatronics, 2020, 3, 238.	2.3	42
14	Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and Electronics in Agriculture, 2020, 173, 105358.	7.7	32
15	Evaluation of information and communication technology sector in the teaching process and strategic collaboration between universities and industry. Computer Applications in Engineering Education, 2019, 27, 653-662.	3.4	14
16	Appraisal and review of e-learning and ICT systems in teaching process. Physica A: Statistical Mechanics and Its Applications, 2019, 513, 456-464.	2.6	39
17	Objectâ€oriented modeling approach of universal education software. Computer Applications in Engineering Education, 2018, 26, 543-558.	3.4	5
18	Statistical evaluation of mathematics lecture performances by soft computing approach. Computer Applications in Engineering Education, 2018, 26, 902-905.	3.4	42

#	Article	IF	CITATIONS
19	Survey of quality models of e-learning systems. Physica A: Statistical Mechanics and Its Applications, 2018, 511, 324-330.	2.6	14
20	Estimation of fractal representation of wind speed fluctuation by artificial neural network with different training algorothms. Flow Measurement and Instrumentation, 2017, 54, 172-176.	2.0	89
21	Precipitation concentration index management by adaptive neuro-fuzzy methodology. Climatic Change, 2017, 141, 655-669.	3.6	43
22	Prediction of laser welding quality by computational intelligence approaches. Optik, 2017, 140, 597-600.	2.9	70
23	Soft computing prediction of economic growth based in science and technology factors. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 217-220.	2.6	22
24	Predicting the reference evapotranspiration based on tensor decomposition. Theoretical and Applied Climatology, 2017, 130, 1099-1109.	2.8	8
25	Predicting turbulent flow friction coefficient using ANFIS technique. Signal, Image and Video Processing, 2017, 11, 341-347.	2.7	17
26	Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique. Knowledge and Information Systems, 2017, 52, 255-265.	3.2	92
27	Forecasting of Underactuated Robotic Finger Contact Forces by Support Vector Regression Methodology. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30, 1659019.	1.2	31
28	A combined method to estimate wind speed distribution based on integrating the support vector machine with firefly algorithm. Environmental Progress and Sustainable Energy, 2016, 35, 867-875.	2.3	28
29	A comparative study for estimation of wave height using traditional and hybrid soft-computing methods. Environmental Earth Sciences, 2016, 75, 1.	2.7	18
30	Adaptation of ANFIS model to assess thermal comfort of an urban square in moderate and dry climate. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1189-1203.	4.0	13
31	Estimation of Wind-Driven Coastal Waves Near a Mangrove Forest Using Adaptive Neuro-Fuzzy Inference System. Water Resources Management, 2016, 30, 2391-2404.	3.9	10
32	Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique. Infrared Physics and Technology, 2016, 77, 12-15.	2.9	29
33	Estimation of the laser cutting operating cost by support vector regression methodology. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	14
34	Thermal sensation prediction by soft computing methodology. Journal of Thermal Biology, 2016, 62, 106-108.	2.5	8
35	Analyzing of flexible gripper by computational intelligence approach. Mechatronics, 2016, 40, 1-16.	3.3	26
36	Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique. Infrared Physics and Technology, 2016, 77, 45-50.	2.9	44

#	Article	IF	Citations
37	Potential of neuro-fuzzy methodology to estimate noise level of wind turbines. Mechanical Systems and Signal Processing, 2016, 66-67, 715-722.	8.0	10
38	Extreme learning machine approach for sensorless wind speed estimation. Mechatronics, 2016, 34, 78-83.	3.3	54
39	Adaptive Neuro-Fuzzy Optimization of Wind Farm Project Investment Under Wake Effect., 2016,, 265-281.		0
40	Hybrid auto-regressive neural network model for estimating global solar radiation in Bandar Abbas, Iran. Environmental Earth Sciences, 2016, 75, 1.	2.7	18
41	Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews, 2016, 53, 1570-1579.	16.4	63
42	Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine. Energy, 2016, 102, 630-636.	8.8	14
43	Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran. Renewable and Sustainable Energy Reviews, 2016, 59, 429-435.	16.4	12
44	Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber. Mechanical Systems and Signal Processing, 2016, 72-73, 486-498.	8.0	3
45	Application and economic viability of wind turbine installation in Lutak, Iran. Environmental Earth Sciences, 2016, 75, 1.	2.7	8
46	Improved side weir discharge coefficient modeling by adaptive neuro-fuzzy methodology. KSCE Journal of Civil Engineering, 2016, 20, 2999-3005.	1.9	9
47	Comparative study of clustering methods for wake effect analysis in wind farm. Energy, 2016, 95, 573-579.	8.8	35
48	Wind farm efficiency by adaptive neuro-fuzzy strategy. International Journal of Electrical Power and Energy Systems, 2016, 81, 215-221.	5.5	107
49	Using ANFIS for selection of more relevant parameters to predict dew point temperature. Applied Thermal Engineering, 2016, 96, 311-319.	6.0	43
50	Evaluation of wind turbine noise by soft computing methodologies: A comparative study. Renewable and Sustainable Energy Reviews, 2016, 56, 1122-1128.	16.4	15
51	Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm. Energy, 2016, 95, 266-273.	8.8	103
52	Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology. Atmospheric Research, 2016, 171, 21-30.	4.1	28
53	Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renewable and Sustainable Energy Reviews, 2016, 56, 428-435.	16.4	94
54	Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform. Water Resources Management, 2016, 30, 641-652.	3.9	43

#	Article	IF	Citations
55	Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews, 2016, 53, 1520-1528.	16.4	50
56	Evaluating the legibility of decorative arabic scripts for Sultan Alauddin mosque using an enhanced soft-computing hybrid algorithm. Computers in Human Behavior, 2016, 55, 127-144.	8.5	5
57	Adaptive control algorithm of flexible robotic gripper by extreme learning machine. Robotics and Computer-Integrated Manufacturing, 2016, 37, 170-178.	9.9	53
58	Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precision Engineering, 2016, 43, 86-92.	3.4	68
59	Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theoretical and Applied Climatology, 2016, 125, 555-563.	2.8	42
60	Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength. Steel and Composite Structures, 2016, 21, 679-688.	1.3	168
61	ADAPTIVE NEURO-FUZZY COMPUTING TECHNIQUE FOR PRECIPITATION ESTIMATION. Facta Universitatis, Series: Mechanical Engineering, 2016, 14, 209.	4.6	18
62	Soft-Computing Methodologies for Precipitation Estimation: A Case Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 1353-1358.	4.9	24
63	Predicting the wind power density based upon extreme learningÂmachine. Energy, 2015, 86, 232-239.	8.8	73
64	Soft computing approaches for forecasting reference evapotranspiration. Computers and Electronics in Agriculture, 2015, 113, 164-173.	7.7	139
65	Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm. Energy, 2015, 87, 343-351.	8.8	83
66	Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture. Powder Technology, 2015, 278, 278-285.	4.2	29
67	Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Computers and Electronics in Agriculture, 2015, 114, 277-284.	7.7	60
68	Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy, 2015, 80, 361-372.	8.8	36
69	Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Conversion and Management, 2015, 91, 433-441.	9.2	173
70	Potential of adaptive neuro-fuzzy inference system for contact positions detection of sensing structure. Measurement: Journal of the International Measurement Confederation, 2015, 61, 234-242.	5.0	11
71	Soft methodology selection of wind turbine parameters to large affect wind energy conversion. International Journal of Electrical Power and Energy Systems, 2015, 69, 98-103.	5.5	24
72	Evaluation of the most influential parameters of heat load in district heating systems. Energy and Buildings, 2015, 104, 264-274.	6.7	22

#	Article	IF	CITATIONS
73	Heat load prediction in district heating systems with adaptive neuro-fuzzy method. Renewable and Sustainable Energy Reviews, 2015, 48, 760-767.	16.4	62
74	Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance. Energy, 2015, 89, 324-333.	8.8	30
75	Performance investigation of micro- and nano-sized particle erosion in a 90° elbow using an ANFIS model. Powder Technology, 2015, 284, 336-343.	4.2	117
76	Sensitivity analysis of the discharge coefficient of a modified triangular side weir by adaptive neuro-fuzzy methodology. Measurement: Journal of the International Measurement Confederation, 2015, 73, 74-81.	5.0	23
77	Comparative Study of Soft Computing Methodologies for Energy Input–Output Analysis to Predict Potato Production. American Journal of Potato Research, 2015, 92, 426-434.	0.9	8
78	Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology. Ultrasonics, 2015, 61, 103-113.	3.9	9
79	Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach. Mechanical Systems and Signal Processing, 2015, 64-65, 520-527.	8.0	15
80	Potential of adaptive neuro-fuzzy inference system for evaluation of drought indices. Stochastic Environmental Research and Risk Assessment, 2015, 29, 1993-2002.	4.0	16
81	A support vector machine–firefly algorithm-based model for global solar radiation prediction. Solar Energy, 2015, 115, 632-644.	6.1	295
82	Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 109-117.	1.6	104
83	Estimation of the rutting performance of Polyethylene Terephthalate modified asphalt mixtures by adaptive neuro-fuzzy methodology. Construction and Building Materials, 2015, 96, 550-555.	7.2	30
84	Support vector machine firefly algorithm based optimization of lens system. Applied Optics, 2015, 54, 37.	1.8	19
85	Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 2015, 117, 214-225.	7.7	102
86	Adaptive neuro-fuzzy approach for estimation of wind speed distribution. International Journal of Electrical Power and Energy Systems, 2015, 73, 389-392.	5.5	36
87	A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renewable and Sustainable Energy Reviews, 2015, 52, 1031-1042.	16.4	112
88	Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renewable and Sustainable Energy Reviews, 2015, 51, 1784-1791.	16.4	141
89	Sensor Data Fusion by Support Vector Regression Methodology—A Comparative Study. IEEE Sensors Journal, 2015, 15, 850-854.	4.7	80
90	Prediction of the solar radiation on the Earth using support vector regression technique. Infrared Physics and Technology, 2015, 68, 179-185.	2.9	67

#	Article	IF	Citations
91	Potential of support vector regression for optimization of lens system. CAD Computer Aided Design, 2015, 62, 57-63.	2.7	10
92	Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant. Computer Methods and Programs in Biomedicine, 2015, 118, 69-76.	4.7	21
93	Clustering project management for drought regions determination: A case study in Serbia. Agricultural and Forest Meteorology, 2015, 200, 57-65.	4.8	26
94	Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine. PLoS ONE, 2014, 9, e103414.	2.5	33
95	Adaptive neuro-fuzzy fusion of sensor data. Infrared Physics and Technology, 2014, 67, 222-228.	2.9	13
96	Contact positions estimation of sensing structure using adaptive neuro-fuzzy inference system. Kybernetes, 2014, 43, 783-796.	2.2	7
97	Adaptive neuro-fuzzy prediction of grasping object weight for passively compliant gripper. Applied Soft Computing Journal, 2014, 22, 424-431.	7.2	27
98	Examination of tapered plastic multimode fiber-based sensor performance with silver coating for different concentrations of calcium hypochlorite by soft computing methodologies—a comparative study. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1023.	1.5	3
99	Adaptive neuro-fuzzy estimation of optimal lens system parameters. Optics and Lasers in Engineering, 2014, 55, 84-93.	3.8	33
100	Adaptive neuro-fuzzy estimation of building augmentation of wind turbine power. Computers and Fluids, 2014, 97, 188-194.	2.5	25
101	Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models. Renewable and Sustainable Energy Reviews, 2014, 36, 270-276.	16.4	24
102	Adaptive neuro-fuzzy maximal power extraction of wind turbine withÂcontinuously variable transmission. Energy, 2014, 64, 868-874.	8.8	190
103	Adaptive Neuro-Fuzzy Evaluation of the Tapered Plastic Multimode Fiber-Based Sensor Performance With and Without Silver Thin Film for Different Concentrations of Calcium Hypochlorite. IEEE Sensors Journal, 2014, 14, 3579-3584.	4.7	10
104	Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 121-131.	0.6	5
105	An appraisal of wind turbine wake models by adaptive neuro-fuzzy methodology. International Journal of Electrical Power and Energy Systems, 2014, 63, 618-624.	5.5	37
106	Co-FAIS: Cooperative fuzzy artificial immune system for detecting intrusion in wireless sensor networks. Journal of Network and Computer Applications, 2014, 42, 102-117.	9.1	88
107	Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission. Energy, 2014, 67, 623-630.	8.8	113
108	Adaptive Neuro-Fuzzy Appraisal of Plasmonic Studies on Morphology of Deposited Silver Thin Films Having Different Thicknesses. Plasmonics, 2014, 9, 1189-1196.	3.4	11

#	Article	IF	Citations
109	Determining the joints most strained in an underactuated robotic finger by adaptive neuro-fuzzy methodology. Advances in Engineering Software, 2014, 77, 28-34.	3.8	14
110	Survey of four models of probability density functions of wind speed and directions by adaptive neuro-fuzzy methodology. Advances in Engineering Software, 2014, 76, 148-153.	3.8	27
111	An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study. Energy Conversion and Management, 2014, 84, 133-139.	9.2	60
112	Adaptive neuro-fuzzy optimization of wind farm project net profit. Energy Conversion and Management, 2014, 80, 229-237.	9.2	30
113	Sensorless estimation of wind speed by adaptive neuro-fuzzy methodology. International Journal of Electrical Power and Energy Systems, 2014, 62, 490-495.	5.5	34
114	Tuberculosis Disease Diagnosis Using Artificial Immune Recognition System. International Journal of Medical Sciences, 2014, 11, 508-514.	2.5	34
115	Sensor elements made of conductive silicone rubber for passively compliant gripper. International Journal of Advanced Manufacturing Technology, 2013, 69, 1527-1536.	3.0	32
116	Application of the TRIZ creativity enhancement approach to design of passively compliant robotic joint. International Journal of Advanced Manufacturing Technology, 2013, 67, 865-875.	3.0	18
117	Intelligent rotational direction control of passive robotic joint with embedded sensors. Expert Systems With Applications, 2013, 40, 1265-1273.	7.6	29
118	Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces. Expert Systems With Applications, 2013, 40, 281-286.	7.6	64
119	Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system. Expert Systems With Applications, 2013, 40, 4490-4495.	7.6	50
120	Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation. Renewable and Sustainable Energy Reviews, 2013, 28, 191-195.	16.4	162
121	Development of a new type of passively adaptive compliant gripper. Industrial Robot, 2013, 40, 610-623.	2.1	58
122	Electrical properties estimation of conductive silicone rubber for tactile sensing structure. Sensor Review, 2013, 33, 114-124.	1.8	8
123	Design of compliant robotic joint with embeddedâ€sensing elements of conductive silicone rubber. Industrial Robot, 2013, 40, 143-157.	2.1	9
124	Passively Adaptive Compliant Gripper. Applied Mechanics and Materials, 2012, 162, 316-325.	0.2	8
125	Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Computing and Applications, 2012, 21, 2065-2070.	5.6	90
126	Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Systems With Applications, 2012, 39, 13295-13304.	7.6	125

į	#	Article	IF	CITATIONS
	127	Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Systems With Applications, 2012, 39, 9477-9482.	7.6	113
	128	Estimation of heating value of solid alcohol fuel based on recycled waste cooking oil. Biomass Conversion and Biorefinery, 0, , .	4.6	1