Tetsutaro Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984947/publications.pdf

Version: 2024-02-01

37 papers

2,940 citations

279798 23 h-index 315739 38 g-index

45 all docs

45 docs citations

45 times ranked

4061 citing authors

#	Article	IF	CITATIONS
1	Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biology, 2013, 14, R31.	8.8	378
2	Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nature Biotechnology, 2020, 38, 747-755.	17.5	313
3	SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 2017, 33, 2314-2321.	4.1	297
4	The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. Journal of Cell Science, 2007, 120, 2498-2506.	2.0	288
5	Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Development Growth and Differentiation, 2006, 48, 371-380.	1.5	229
6	Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nature Communications, 2018, 9, 619.	12.8	192
7	Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22329-22334.	7.1	146
8	Singleâ€cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its "index sorting―function for stem cell research. Development Growth and Differentiation, 2010, 52, 131-144.	1.5	106
9	Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biology, 2018, 19, 29.	8.8	101
10	The ancestral gene repertoire of animal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7093-100.	7.1	88
11	Planarian fibroblast growth factor receptor homologs expressed in stem cells and cephalic ganglions. Development Growth and Differentiation, 2002, 44, 191-204.	1.5	71
12	Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Development Growth and Differentiation, 2007, 49, 571-581.	1.5	66
13	Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 2020, 6, eaaz6699.	10.3	66
14	Tracing the origin of hair follicle stem cells. Nature, 2021, 594, 547-552.	27.8	62
15	Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin. Development Growth and Differentiation, 2005, 47, 243-253.	1.5	59
16	Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development (Cambridge), 2007, 134, 1679-1689.	2.5	50
17	A LIM-homeobox gene is required for differentiation of Wnt-expressing cells at the posterior end of the planarian body. Development (Cambridge), 2011, 138, 3679-3688.	2.5	50
18	Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. International Journal of Developmental Biology, 2012, 56, 93-102.	0.6	47

#	Article	IF	CITATIONS
19	Unusually Large Number of Mutations in Asexually Reproducing Clonal Planarian Dugesia japonica. PLoS ONE, 2015, 10, e0143525.	2.5	41
20	Expression and functional analysis of musashi-like genes in planarian CNS regeneration. Mechanisms of Development, 2008, 125, 631-645.	1.7	36
21	The planarian P2X homolog in the regulation of asexual reproduction. International Journal of Developmental Biology, 2012, 56, 173-182.	0.6	29
22	Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes and Development, 2018, 32, 165-180.	5.9	28
23	Cultivation and Characterization of Planarian Neuronal Cells Isolated by Fluorescence Activated Cell Sorting (FACS). Zoological Science, 2002, 19, 1257-1265.	0.7	26
24	The Number of Transcription Factors at an Enhancer Determines Switch-like Gene Expression. Cell Reports, 2020, 31, 107724.	6.4	25
25	Singleâ€oocyte transcriptome analysis reveals agingâ€associated effects influenced by life stage and calorie restriction. Aging Cell, 2021, 20, e13428.	6.7	22
26	Muscle and connective tissue progenitor populations show distinct Twist1 and Twist3 expression profiles during axolotl limb regeneration. Developmental Biology, 2013, 373, 196-204.	2.0	18
27	Calcium ions in the aquatic environment drive planarians to food. Zoological Letters, 2019, 5, 31.	1.3	12
28	Cell typeâ€specific transcriptome analysis unveils secreted signaling molecule genes expressed in apical epithelial cap during appendage regeneration. Development Growth and Differentiation, 2019, 61, 447-456.	1.5	9
29	The pharyngeal nervous system orchestrates feeding behavior in planarians. Science Advances, 2020, 6, eaaz0882.	10.3	8
30	A Subtractive FACS Method for Isolation of Planarian Stem Cells and Neural Cells. Methods in Molecular Biology, 2018, 1774, 467-478.	0.9	7
31	Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers. PLoS Genetics, 2022, 18, e1010235.	3.5	7
32	Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods. Advances in Experimental Medicine and Biology, 2019, 1129, 1-17.	1.6	6
33	An NMF-based approach to discover overlooked differentially expressed gene regions from single-cell RNA-seq data. NAR Genomics and Bioinformatics, 2020, 2, lqz020.	3.2	5
34	Millefy: visualizing cell-to-cell heterogeneity in read coverage of single-cell RNA sequencing datasets. BMC Genomics, 2020, 21, 177.	2.8	5
35	Derepression of inflammation-related genes link to microglia activation and neural maturation defect in a mouse model of Kleefstra syndrome. IScience, 2021, 24, 102741.	4.1	5
36	Loss of $\langle i \rangle$ place $8 \langle i \rangle$ expression rapidly leads pluripotent stem cells to enter active state during planarian regeneration. Development (Cambridge), 2022, 149, .	2.5	5

3

TETSUTARO HAYASHI

#	Article	IF	CITATIONS
37	A Unique FACS Method to Isolate Stem Cells in Planarian. Methods in Molecular Biology, 2012, 879, 29-37.	0.9	4