
Tiago Fleming Outeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular Prion Protein Mediates α‣ynuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Movement Disorders, 2022, 37, 39-51.	3.9	13
2	Endogenous Levels of Alpha-Synuclein Modulate Seeding and Aggregation in Cultured Cells. Molecular Neurobiology, 2022, 59, 1273-1284.	4.0	15
3	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	7.6	9
4	Production of Recombinant Alpha-Synuclein: Still No Standardized Protocol in Sight. Biomolecules, 2022, 12, 324.	4.0	5
5	Monitoring the interactions between alpha-synuclein and Tau in vitro and in vivo using bimolecular fluorescence complementation. Scientific Reports, 2022, 12, 2987.	3.3	10
6	Glycation modulates alpha-synuclein fibrillization kinetics: A sweet spot for inhibition. Journal of Biological Chemistry, 2022, 298, 101848.	3.4	12
7	α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109617119.	7.1	60
8	Rapidly Signalâ€enhanced Metabolites for Atomic Scale Monitoring of Living Cells with Magnetic Resonance. Chemistry Methods, 2022, 2, .	3.8	21
9	The small aromatic compound SynuClean-D inhibits theÂaggregation and seeded polymerization of multiple α-synuclein strains. Journal of Biological Chemistry, 2022, 298, 101902.	3.4	6
10	Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiology of Disease, 2022, 168, 105696.	4.4	14
11	Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. Npj Parkinson's Disease, 2022, 8, 51.	5.3	15
12	Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines, 2022, 10, 1141.	3.2	9
13	Editorial for the Special Issue "Adaptation, Aging, and Cell Death in Yeast Stress Response: Models, Mechanisms and Applications― Microorganisms, 2022, 10, 1126.	3.6	0
14	Aromaticity at position 39 in αâ€synuclein: A modulator of amyloid fibril assembly and membraneâ€bound conformations. Protein Science, 2022, 31, .	7.6	7
15	Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathologica Communications, 2022, 10, .	5.2	24
16	A water-soluble manganese(II) octanediaoate/phenanthroline complex acts as an antioxidant and attenuates alpha-synuclein toxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166475.	3.8	1
17	RAB39B is redistributed in dementia with Lewy bodies and is sequestered within al ² plaques and Lewy bodies. Brain Pathology, 2021, 31, 120-132.	4.1	11
18	JM-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson's disease: Mitochondrial protection and antioxidant properties. NeuroToxicology, 2021, 82, 89-98.	3.0	11

#	Article	IF	CITATIONS
19	From <scp>iPS</scp> Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Movement Disorders, 2021, 36, 832-841.	3.9	10
20	Alphaâ€synuclein oligomerization and aggregation: A model will always be a model. Journal of Neurochemistry, 2021, 157, 889-890.	3.9	1
21	Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Movement Disorders, 2021, 36, 340-346.	3.9	18
22	Alpha-Synuclein Antibody Characterization: Why Semantics Matters. Molecular Neurobiology, 2021, 58, 2202-2203.	4.0	4
23	Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathologica, 2021, 141, 511-526.	7.7	31
24	Doxycycline Therapeutic Approach in Parkinson's Disease and L-DOPA-Induced Dyskinesia. , 2021, , 1-21.		0
25	Reply to: "Parkinson's Disease and COVIDâ€19: Do We Need to Be More Patient?― Movement Disorders, 2021, 36, 278-279.	3.9	3
26	Emerging concepts in synucleinopathies. Acta Neuropathologica, 2021, 141, 469-470.	7.7	5
27	Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells, 2021, 10, 375.	4.1	54
28	Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Frontiers in Aging Neuroscience, 2021, 13, 635760.	3.4	14
29	MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Frontiers in Cellular Neuroscience, 2021, 15, 641264.	3.7	9
30	DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genetics, 2021, 17, e1009407.	3.5	19
31	Doxycycline inhibits α-synuclein-associated pathologies in vitro and in vivo. Neurobiology of Disease, 2021, 151, 105256.	4.4	35
32	Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Frontiers in Molecular Neuroscience, 2021, 14, 659926.	2.9	8
33	Dysfunction of <scp>RAB39Bâ€</scp> Mediated Vesicular Trafficking in Lewy Body Diseases. Movement Disorders, 2021, 36, 1744-1758.	3.9	12
34	Small Molecule Fisetin Modulates Alpha–Synuclein Aggregation. Molecules, 2021, 26, 3353.	3.8	12
35	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	5.3	74
36	Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations inÂvivo. Molecular Therapy, 2021, 29, 2821-2840.	8.2	26

#	Article	IF	CITATIONS
37	In silico analysis of the aggregation propensity of the SARS-CoV-2 proteome: Insight into possible cellular pathologies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140693.	2.3	7
38	JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. NeuroToxicology, 2021, 87, 70-85.	3.0	9
39	Alpha-synuclein spreading mechanisms in Parkinson's disease: The role of membrane receptors. International Review of Movement Disorders, 2021, 2, 1-63.	0.1	Ο
40	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	7.9	129
41	Tapentadol Prevents Motor Impairments in a Mouse Model of Dyskinesia. Neuroscience, 2020, 424, 58-71.	2.3	2
42	Molecular characterization of an aggregation-prone variant of alpha-synuclein used to model synucleinopathies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140298.	2.3	10
43	Are genetic and idiopathic forms of Parkinson's disease the same disease?. Journal of Neurochemistry, 2020, 152, 515-522.	3.9	28
44	Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model. Pharmacology Biochemistry and Behavior, 2020, 189, 172828.	2.9	16
45	Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sciences, 2020, 10, 858.	2.3	17
46	The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer's Disease Pathophysiology. Frontiers in Pharmacology, 2020, 11, 985.	3.5	9
47	Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Scientific Reports, 2020, 10, 12827.	3.3	29
48	The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 5724.	4.1	37
49	Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants, 2020, 9, 789.	5.1	9
50	X1INH, an improved next-generation affinity-optimized hydrazonic ligand, attenuates abnormal copper(<scp>i</scp>)/copper(<scp>ii</scp>)-l±-Syn interactions and affects protein aggregation in a cellular model of synucleinopathy. Dalton Transactions, 2020, 49, 16252-16267.	3.3	19
51	Protein trapping leads to altered synaptic proteostasis in synucleinopathies. FEBS Journal, 2020, 287, 5294-5303.	4.7	5
52	Reply to: SARS oVâ€2 as a Potential Trigger of Neurodegenerative Diseases. Movement Disorders, 2020, 35, 1106-1107.	3.9	0
53	The courage to change science. EMBO Reports, 2020, 21, e50124.	4.5	1
54	A new MAP-Rasagiline conjugate reduces α-synuclein inclusion formation in a cell model. Pharmacological Reports, 2020, 72, 456-464.	3.3	12

#	Article	IF	CITATIONS
55	Mechanisms of alpha-synuclein toxicity: An update and outlook. Progress in Brain Research, 2020, 252, 91-129.	1.4	49
56	Synucleinopathies: Where we are and where we need to go. Journal of Neurochemistry, 2020, 153, 433-454.	3.9	62
57	Editorial: Protein Misfolding and Spreading Pathology in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 12, 312.	2.9	11
58	Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Scientific Reports, 2020, 10, 6064.	3.3	31
59	Hsp27 reduces glycationâ€induced toxicity and aggregation of alphaâ€synuclein. FASEB Journal, 2020, 34, 6718-6728.	0.5	18
60	<scp>SARS oV</scp> â€2: At the Crossroad Between Aging and Neurodegeneration. Movement Disorders, 2020, 35, 716-720.	3.9	114
61	The Interplay Between Proteostasis Systems and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 223-236.	1.6	6
62	SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging, 2020, 12, 18778-18789.	3.1	43
63	Increased expression of myelin-associated genes in frontal cortex of <i>SNCA</i> overexpressing rats and Parkinson's disease patients. Aging, 2020, 12, 18889-18906.	3.1	10
64	Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. Journal of Huntington's Disease, 2019, 8, 245-256.	1.9	19
65	A 2A Râ€induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 2019, 67, 2329-2342.	4.9	28
66	Cellular models of alphaâ€synuclein toxicity and aggregation. Journal of Neurochemistry, 2019, 150, 566-576.	3.9	75
67	Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies. Cell Reports, 2019, 28, 65-77.e6.	6.4	41
68	Epigenetics of the Synapse in Neurodegeneration. Current Neurology and Neuroscience Reports, 2019, 19, 72.	4.2	19
69	Synuclein Meeting 2019: where we are and where we need to go. Journal of Neurochemistry, 2019, 150, 462-466.	3.9	3
70	Dementia with Lewy bodies: an update and outlook. Molecular Neurodegeneration, 2019, 14, 5.	10.8	203
71	Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Translational Neurodegeneration, 2019, 8, 18.	8.0	48
72	The synthetic cannabinoid JWH-018 modulates Saccharomyces cerevisiae energetic metabolism. FEMS Yeast Research, 2019, 19, .	2.3	2

#	Article	IF	CITATIONS
73	Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	2.9	79
74	Effects of alphaâ€synuclein postâ€ŧranslational modifications on metal binding. Journal of Neurochemistry, 2019, 150, 507-521.	3.9	60
75	LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders?. Biochemical Society Transactions, 2019, 47, 827-838.	3.4	15
76	Investigating targets for neuropharmacological intervention by molecular dynamics simulations. Biochemical Society Transactions, 2019, 47, 909-918.	3.4	1
77	<i>In vitro</i> models of synucleinopathies: informing on molecular mechanisms and protective strategies. Journal of Neurochemistry, 2019, 150, 535-565.	3.9	33
78	α‣ynuclein toxicity in yeast and human cells is caused by cell cycle reâ€entry and autophagy degradation of ribonucleotide reductase 1. Aging Cell, 2019, 18, e12922.	6.7	19
79	Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. Journal of Neuroscience, 2019, 39, 3752-3769.	3.6	46
80	Seeding variability of different alpha synuclein strains in synucleinopathies. Annals of Neurology, 2019, 85, 691-703.	5.3	85
81	Yeast-Based Screens to Target Alpha-Synuclein Toxicity. Methods in Molecular Biology, 2019, 1948, 145-156.	0.9	4
82	Biasing the native α-synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. Redox Biology, 2019, 22, 101135.	9.0	34
83	Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant Sod1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25991-26000.	7.1	43
84	Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Human Molecular Genetics, 2019, 28, 31-50.	2.9	131
85	The role of LRRK2 in cell signalling. Biochemical Society Transactions, 2019, 47, 197-207.	3.4	34
86	Synthesis and evaluation of esterified Hsp70 agonists in cellular models of protein aggregation and folding. Bioorganic and Medicinal Chemistry, 2019, 27, 79-91.	3.0	17
87	Monitoring αâ€synuclein multimerization <i>in vivo</i> . FASEB Journal, 2019, 33, 2116-2131.	0.5	10
88	Attention-deficit/hyperactivity disorder is associated with reduced levels of serum low-density lipoprotein cholesterol in adolescents. Data from the population-based German KiGGS study. World Journal of Biological Psychiatry, 2019, 20, 496-504.	2.6	19
89	The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Molecular Neurobiology, 2019, 56, 61-77.	4.0	33
90	Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 33-43.	2.8	41

#	Article	IF	CITATIONS
91	Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Molecular Neurobiology, 2018, 55, 8754-8763.	4.0	53
92	Binding Modes of Phthalocyanines to Amyloid β Peptide and Their Effects on Amyloid Fibril Formation. Biophysical Journal, 2018, 114, 1036-1045.	0.5	15
93	IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 459-467.	3.6	14
94	Implications of fALS Mutations on Sod1 Function and Oligomerization in Cell Models. Molecular Neurobiology, 2018, 55, 5269-5281.	4.0	18
95	Glyoxal as an alternative fixative to formaldehyde in immunostaining and superâ€resolution microscopy. EMBO Journal, 2018, 37, 139-159.	7.8	206
96	Sensing α‧ynuclein From the Outside via the Prion Protein: Implications for Neurodegeneration. Movement Disorders, 2018, 33, 1675-1684.	3.9	19
97	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
98	Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cellular and Molecular Neurobiology, 2018, 38, 1539-1550.	3.3	79
99	Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Research, 2018, 18, .	2.3	4
100	Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10481-10486.	7.1	166
101	Sirtuins in Brain and Neurodegenerative Disease. , 2018, , 175-195.		2
102	The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Research, 2018, 18, .	2.3	37
103	Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. Frontiers in Neurology, 2018, 9, 347.	2.4	103
104	(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Scientific Reports, 2018, 8, 6965.	3.3	20
105	Membrane binding, internalization, and sorting of alpha-synuclein in the cell. Acta Neuropathologica Communications, 2018, 6, 79.	5.2	78
106	Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiology of Disease, 2018, 119, 121-135.	4.4	44
107	SIRT2 in age-related neurodegenerative disorders. Aging, 2018, 10, 295-296.	3.1	6
108	Adenosine A _{2A} Receptors Modulate α-Synuclein Aggregation and Toxicity. Cerebral Cortex, 2017, 27, bhv268.	2.9	66

#	Article	IF	CITATIONS
109	Traffic jams and the complex role of α-Synuclein aggregation in Parkinson disease. Small GTPases, 2017, 8, 78-84.	1.6	15
110	Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcl³ Receptors. Cellular and Molecular Neurobiology, 2017, 37, 121-131.	3.3	39
111	Synthesis and Biological Evaluation of Novel 2â€Aryl Benzimidazoles as Chemotherapeutic Agents. Journal of Heterocyclic Chemistry, 2017, 54, 255-267.	2.6	11
112	Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, 2017, 27, 435-449.	1.9	21
113	Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Scientific Reports, 2017, 7, 42942.	3.3	68
114	A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. Journal of Inorganic Biochemistry, 2017, 170, 160-168.	3.5	43
115	Sirtuin 2 enhances dopaminergic differentiation via the AKT/GSK-3β/β-catenin pathway. Neurobiology of Aging, 2017, 56, 7-16.	3.1	33
116	Glycation potentiates α-synuclein-associated neurodegeneration in synucleinopathies. Brain, 2017, 140, 1399-1419.	7.6	153
117	Epigenetics in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 978, 363-390.	1.6	50
118	Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Experimental Neurology, 2017, 298, 162-171.	4.1	49
119	Treatment with diphenyl–pyrazole compound anle138b/c reveals that α-synuclein protects melanoma cells from autophagic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4971-E4977.	7.1	25
120	Yeast models of Parkinson's disease-associated molecular pathologies. Current Opinion in Genetics and Development, 2017, 44, 74-83.	3.3	49
121	Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Experimental Neurology, 2017, 295, 77-87.	4.1	72
122	Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Human Molecular Genetics, 2017, 26, 2231-2246.	2.9	121
123	Copper(II) and the pathological H50Q α-synuclein mutant: Environment meets genetics. Communicative and Integrative Biology, 2017, 10, e1270484.	1.4	22
124	Phycocyanin protects against Alpha-Synuclein toxicity in yeast. Journal of Functional Foods, 2017, 38, 553-560.	3.4	9
125	α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nature Neuroscience, 2017, 20, 1569-1579.	14.8	223
126	Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson's disease. Scientific Reports, 2017, 7, 13713.	3.3	79

#	Article	IF	CITATIONS
127	Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Research Reviews, 2017, 40, 168-181.	10.9	23
128	Serum lipid alterations in GBA-associated Parkinson's disease. Parkinsonism and Related Disorders, 2017, 44, 58-65.	2.2	73
129	Neuromelanin magnetic resonance imaging of the substantia nigra in <i>LRRK2</i> â€related Parkinson's disease. Movement Disorders, 2017, 32, 1331-1333.	3.9	5
130	The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 2017, 26, 4105-4117.	2.9	67
131	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
132	Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.	8.5	158
133	Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Human Molecular Genetics, 2017, 26, 3763-3775.	2.9	32
134	Mutant A53T α-Synuclein Improves Rotarod Performance Before Motor Deficits and Affects Metabolic Pathways. NeuroMolecular Medicine, 2017, 19, 113-121.	3.4	20
135	Contribution of Neuroepigenetics to Huntington's Disease. Frontiers in Human Neuroscience, 2017, 11, 17.	2.0	46
136	Editorial: Molecular Chaperones and Neurodegeneration. Frontiers in Neuroscience, 2017, 11, 565.	2.8	6
137	The mechanism of sirtuin 2–mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biology, 2017, 15, e2000374.	5.6	114
138	The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 97.	2.7	8
139	Synuclein misfolding as a therapeutic target. , 2017, , 21-47.		0
140	A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Frontiers in Neuroscience, 2016, 10, 511.	2.8	43
141	Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles. PLoS ONE, 2016, 11, e0157852.	2.5	36
142	B7â€Glycation potentiates neurodegeneration in models of huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A11.2-A11.	1.9	0
143	Analysis of Protein Oligomeric Species by Sucrose Gradients. Methods in Molecular Biology, 2016, 1449, 331-339.	0.9	1
144	Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6506-E6515.	7.1	75

#	Article	IF	CITATIONS
145	Structure, function and toxicity of alphaâ€synuclein: the Bermuda triangle in synucleinopathies. Journal of Neurochemistry, 2016, 139, 240-255.	3.9	163
146	The yin and yang of α-synuclein-associated epigenetics in Parkinson's disease. Brain, 2016, 140, aww227.	7.6	26
147	Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin. Molecular and Cellular Endocrinology, 2016, 434, 238-249.	3.2	8
148	Glycation potentiates neurodegeneration in models of Huntington's disease. Scientific Reports, 2016, 6, 36798.	3.3	27
149	The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Scientific Reports, 2016, 6, 31493.	3.3	55
150	The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 2016, 4, 128.	5.2	35
151	<scp>G</scp> lycation in <scp>P</scp> arkinson's disease and Alzheimer's disease. Movement Disorders, 2016, 31, 782-790.	3.9	104
152	Fasudil attenuates aggregation of α-synuclein in models of Parkinson's disease. Acta Neuropathologica Communications, 2016, 4, 39.	5.2	123
153	A familial ATP13A2 mutation enhances alpha-synuclein aggregation and promotes cell death. Human Molecular Genetics, 2016, 25, ddw147.	2.9	23
154	Insulinâ€like growth factorâ€l gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. European Journal of Neuroscience, 2016, 44, 2120-2128.	2.6	69
155	LRRK2 Promotes Tau Accumulation, Aggregation and Release. Molecular Neurobiology, 2016, 53, 3124-3135.	4.0	40
156	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
157	αB-Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease. Human Molecular Genetics, 2016, 25, 1677-1689.	2.9	33
158	Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Human Molecular Genetics, 2016, 25, 275-290.	2.9	29
159	shRNA-Based Screen Identifies Endocytic Recycling Pathway Components That Act as Genetic Modifiers of Alpha-Synuclein Aggregation, Secretion and Toxicity. PLoS Genetics, 2016, 12, e1005995.	3.5	68
160	C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2016, 12, e1006098.	3.5	49
161	Modeling Neuronal Pathology in Yeast: Insights into the Molecular Basis of Parkinson's Disease. Israel Journal of Chemistry, 2015, 55, 1252-1259.	2.3	0
162	The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson's Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia. PLoS ONE, 2015, 10, e0116919.	2.5	106

#	Article	IF	CITATIONS
163	The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules, 2015, 5, 435-471.	4.0	79
164	Small Molecules Detected by Second-Harmonic Generation Modulate the Conformation of Monomeric α-Synuclein and Reduce Its Aggregation in Cells. Journal of Biological Chemistry, 2015, 290, 27582-27593.	3.4	53
165	Â-Synuclein modifies mutant huntingtin aggregation and neurotoxicity in Drosophila. Human Molecular Genetics, 2015, 24, 1898-1907.	2.9	34
166	Isostructural Re(<scp>i</scp>)/ ^{99m} Tc(<scp>i</scp>) tricarbonyl complexes for cancer theranostics. Organic and Biomolecular Chemistry, 2015, 13, 5182-5194.	2.8	18
167	Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Human Molecular Genetics, 2015, 24, 1077-1091.	2.9	94
168	Parkinson Disease Mutant E46K Enhances α-Synuclein Phosphorylation in Mammalian Cell Lines, in Yeast, and in Vivo. Journal of Biological Chemistry, 2015, 290, 9412-9427.	3.4	52
169	Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies. ACS Nano, 2015, 9, 11034-11041.	14.6	26
170	Knockout of Silent Information Regulator 2 (SIRT2) Preserves Neurological Function after Experimental Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 2080-2088.	4.3	45
171	Alpha-Synuclein Regulates Neuronal Levels of Manganese and Calcium. ACS Chemical Neuroscience, 2015, 6, 1769-1779.	3.5	43
172	Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death and Disease, 2015, 6, e1994-e1994.	6.3	125
173	Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends in Pharmacological Sciences, 2015, 36, 756-768.	8.7	201
174	(Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 2015, 24, 1717-1732.	2.9	66
175	Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Human Molecular Genetics, 2015, 24, 76-85.	2.9	73
176	From the baker to the bedside: yeast models of Parkinson's disease. Microbial Cell, 2015, 2, 262-279.	3.2	59
177	ATP13A2 and Alpha-synuclein: a Metal Taste in Autophagy. Experimental Neurobiology, 2014, 23, 314-323.	1.6	11
178	Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy, 2014, 10, 2171-2192.	9.1	174
179	Integration of Single Cell Traps, Chemical Gradient Generator and Photosensors in a Microfluidic Platform for the Study of Alpha-Synuclein Toxicity in Yeast. Procedia Engineering, 2014, 87, 92-95.	1.2	0
180	Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7012-7017.	7.1	45

#	Article	IF	CITATIONS
181	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	3.5	168
182	Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2014, 10, e1004302.	3.5	114
183	Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nature Communications, 2014, 5, 5857.	12.8	91
184	Interplay between Sumoylation and Phosphorylation for Protection against α-Synuclein Inclusions. Journal of Biological Chemistry, 2014, 289, 31224-31240.	3.4	63
185	Studying the Molecular Determinants of Protein Oligomerization in Neurodegenerative Disorders by Bimolecular Fluorescence Complementation. , 2014, , 133-145.		0
186	DJ-1 modulates aggregation and pathogenesis in models of Huntington's disease. Human Molecular Genetics, 2014, 23, 755-766.	2.9	40
187	MeCP2: a novel Huntingtin interactor. Human Molecular Genetics, 2014, 23, 1036-1044.	2.9	43
188	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	6.0	33
189	Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Molecular and Cellular Neurosciences, 2014, 62, 51-59.	2.2	83
190	DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease. Cell Death and Disease, 2014, 5, e1350-e1350.	6.3	130
191	The small GTPase Rab11 co-localizes with Â-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	2.9	73
192	Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson's Disease. Drugs and Aging, 2014, 31, 239-261.	2.7	25
193	α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiology of Disease, 2014, 70, 149-161.	4.4	84
194	Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Human Molecular Genetics, 2014, 23, 3129-3137.	2.9	38
195	Protein phosphorylation in neurodegeneration: friend or foe?. Frontiers in Molecular Neuroscience, 2014, 7, 42.	2.9	203
196	The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease. Journal of Molecular Medicine, 2013, 91, 705-713.	3.9	42
197	Parkinson's disease-associated mutations in DJ-1 modulate its dimerization in living cells. Journal of Molecular Medicine, 2013, 91, 599-611.	3.9	31
198	PLK2 Modulates α-Synuclein Aggregation in Yeast and Mammalian Cells. Molecular Neurobiology, 2013, 48, 854-862.	4.0	37

#	Article	IF	CITATIONS
199	Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4065-4072.	2.4	43
200	Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. Journal of Neurochemistry, 2013, 127, 438-452.	3.9	82
201	Live-cell imaging of p53 interactions using a novel Venus-based bimolecular fluorescence complementation system. Biochemical Pharmacology, 2013, 85, 745-752.	4.4	13
202	The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO Journal, 2013, 32, 2603-2616.	7.8	149
203	Off-pathway α -synuclein oligomers seem to alter α -synuclein turnover in a cell model but lack seeding capability <i>in vivo</i> . Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2013, 20, 233-244.	3.0	22
204	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	3.9	116
205	Impairment of the septal cholinergic neurons in MPTP-treated A30P α-synuclein mice. Neurobiology of Aging, 2013, 34, 589-601.	3.1	16
206	Epigenetics in Parkinson's and Alzheimer's Diseases. Sub-Cellular Biochemistry, 2013, 61, 507-525.	2.4	33
207	Assessing the Subcellular Dynamics of Alpha-synuclein Using Photoactivation Microscopy. Molecular Neurobiology, 2013, 47, 1081-1092.	4.0	72
208	SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Molecular Medicine, 2013, 5, 344-352.	6.9	352
209	LRRK2 interactions with α-synuclein in Parkinson's disease brains and in cell models. Journal of Molecular Medicine, 2013, 91, 513-522.	3.9	68
210	Heatâ€mediated enrichment of αâ€synuclein from cells and tissue for assessing postâ€translational modifications. Journal of Neurochemistry, 2013, 126, 673-684.	3.9	21
211	Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496, 382-385.	27.8	124
212	alpha-Synuclein and intracellular trafficking: impact on the spreading of Parkinson's disease pathology. Journal of Molecular Medicine, 2013, 91, 693-703.	3.9	55
213	The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Brain Research Bulletin, 2013, 90, 118-126.	3.0	23
214	βâ€synuclein aggregates and induces neurodegeneration in dopaminergic neurons. Annals of Neurology, 2013, 74, 109-118.	5.3	58
215	Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration. Journal of Parkinson's Disease, 2013, 3, 415-459.	2.8	68
216	β-Defensin Genomic Copy Number Does Not Influence the Age of Onset in Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 107-124.	1.9	1

#	Article	IF	CITATIONS
217	Upcoming Meetings Related to Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 135-135.	1.9	Ο
218	Aggregate Clearance of α-Synuclein in Saccharomyces cerevisiae Depends More on Autophagosome and Vacuole Function Than on the Proteasome. Journal of Biological Chemistry, 2012, 287, 27567-27579.	3.4	66
219	Imaging Protein Oligomerization in Neurodegeneration Using Bimolecular Fluorescence Complementation. Methods in Enzymology, 2012, 506, 157-174.	1.0	10
220	Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Human Molecular Genetics, 2012, 21, 2432-2449.	2.9	58
221	High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics, 2012, 6, 014109.	2.4	11
222	Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiology of Aging, 2012, 33, 1122.e23-1122.e39.	3.1	81
223	Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience, 2012, 220, 256-266.	2.3	73
224	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	3.6	228
225	SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	9.1	113
226	Alpha-synuclein: from secretion to dysfunction and death. Cell Death and Disease, 2012, 3, e350-e350.	6.3	239
227	Editorial on Special Topic: Sirtuins in Metabolism, Aging, and Disease. Frontiers in Pharmacology, 2012, 3, 71.	3.5	7
228	SIRT2 as a Therapeutic Target for Age-Related Disorders. Frontiers in Pharmacology, 2012, 3, 82.	3.5	107
229	α‧ynuclein modifies huntingtin aggregation in living cells. FEBS Letters, 2012, 586, 7-12.	2.8	29
230	FlAsH illuminates AÎ ² aggregation. Nature Chemical Biology, 2011, 7, 581-582.	8.0	6
231	Dopamine-depletion and increased α-synuclein load induce degeneration of cortical cholinergic fibers in mice. Journal of the Neurological Sciences, 2011, 310, 90-95.	0.6	25
232	Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLOS Currents, 2011, 3, RRN1210.	1.4	74
233	Epigenetics in neurodegeneration: A new layer of complexity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 348-355.	4.8	84
234	Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast. Biochemical Society Transactions, 2011, 39, 1476-1481.	3.4	23

#	Article	IF	CITATIONS
235	Idebenone and Resveratrol Extend Lifespan and Improve Motor Function of HtrA2 Knockout Mice. PLoS ONE, 2011, 6, e28855.	2.5	45
236	Tau Enhances α-Synuclein Aggregation and Toxicity in Cellular Models of Synucleinopathy. PLoS ONE, 2011, 6, e26609.	2.5	115
237	Synthesis and in vitro evaluation of fluorinated styryl benzazoles as amyloid-probes. Bioorganic and Medicinal Chemistry, 2011, 19, 7698-7710.	3.0	26
238	α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation, 2011, 121, 715-725.	8.2	722
239	Assessment of the Efficacy of Solutes from Extremophiles on Protein Aggregation in Cell Models of Huntington's and Parkinson's Diseases. Neurochemical Research, 2011, 36, 1005-1011.	3.3	5
240	Modulating Alzheimer's Disease Through Caffeine: A Putative Link to Epigenetics. Journal of Alzheimer's Disease, 2011, 24, 161-171.	2.6	70
241	Functional Gene Expression Profiling in Yeast Implicates Translational Dysfunction in Mutant Huntingtin Toxicity. Journal of Biological Chemistry, 2011, 286, 410-419.	3.4	51
242	Synaptic Dysfunction in Parkinson's Disease: From Protein Misfolding to Functional Alterations. , 2011, , 257-267.		2
243	Impaired Proteostasis Contributes to Renal Tubular Dysgenesis. PLoS ONE, 2011, 6, e20854.	2.5	6
244	Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson's Disease. PLoS ONE, 2011, 6, e25443.	2.5	235
245	Antibodies against Alpha-Synuclein Reduce Oligomerization in Living Cells. PLoS ONE, 2011, 6, e27230.	2.5	61
246	Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. DMM Disease Models and Mechanisms, 2010, 3, 194-208.	2.4	159
247	Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress and Chaperones, 2010, 15, 959-964.	2.9	99
248	Zooming into protein oligomerization in neurodegeneration using BiFC. Trends in Biochemical Sciences, 2010, 35, 643-651.	7.5	36
249	A nonâ€invasive method based on saliva to characterize transthyretin in familial amyloidotic polyneuropathy patients using FTâ€ICR highâ€resolution MS. Proteomics - Clinical Applications, 2010, 4, 674-678.	1.6	6
250	The sour side of neurodegenerative disorders: the effects of protein glycation. Journal of Pathology, 2010, 221, 13-25.	4.5	138
251	Simple is good: yeast models of neurodegeneration. FEMS Yeast Research, 2010, 10, 970-979.	2.3	77

252 Editorial [Hot Topic: Drug Discovery for CNS Disorders: From Bench to Bedside (Guest Editor: Tiago) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
253	Alzheimer's Disease: The Quest to Understand Complexity. Journal of Alzheimer's Disease, 2010, 21, 373-383.	2.6	25
254	Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner. PLoS ONE, 2010, 5, e13700.	2.5	36
255	Sirtuins: Common Targets in Aging and in Neurodegeneration. Current Drug Targets, 2010, 11, 1270-1280.	2.1	45
256	Identification and quantitative analysis of human transthyretin variants in human serum by Fourier transform ion-cyclotron resonance mass spectrometry. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2009, 16, 201-207.	3.0	9
257	Current and Future Therapeutic Strategies for Parkinsons Disease. Current Pharmaceutical Design, 2009, 15, 3968-3976.	1.9	11
258	Dopamine-Induced Conformational Changes in Alpha-Synuclein. PLoS ONE, 2009, 4, e6906.	2.5	59
259	Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal, 2008, 3, 325-338.	3.5	72
260	Detection of Compounds That Rescue Rab1â€ S ynuclein Toxicity. Methods in Enzymology, 2008, 439, 339-351.	1.0	18
261	Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Experimental Neurology, 2008, 213, 315-325.	4.1	334
262	Therapeutic role of sirtuins in neurodegenerative disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 363-369.	3.8	107
263	CHIP Targets Toxic α-Synuclein Oligomers for Degradation. Journal of Biological Chemistry, 2008, 283, 17962-17968.	3.4	155
264	From Mad Cows to Neurotic Yeast: Novel Molecular Approaches to Understand Neurodegeneration. Microscopy and Microanalysis, 2008, 14, 105-106.	0.4	0
265	Drug Targeting of α-Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 1177391X0800200.	4.6	3
266	Formation of Toxic Oligomeric α-Synuclein Species in Living Cells. PLoS ONE, 2008, 3, e1867.	2.5	354
267	Drug Targeting of alpha-Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 41-9.	4.6	4
268	Pharmacological inhibition of PARP-1 reduces α-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochemical and Biophysical Research Communications, 2007, 357, 596-602.	2.1	67
269	Angiotensin II protects against α-synuclein toxicity and reduces protein aggregation in vitro. Biochemical and Biophysical Research Communications, 2007, 363, 846-851.	2.1	25
270	Sirtuin 2 Inhibitors Rescue α-Synuclein-Mediated Toxicity in Models of Parkinson's Disease. Science, 2007, 317, 516-519.	12.6	995

#	Article	IF	CITATIONS
271	Protein Aggregation Disorders. , 2007, , 111-123.		2
272	Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. Journal of Neurochemistry, 2007, 100, 070214184024010-???.	3.9	164
273	Mechanisms of Disease II: Cellular Protein Quality Control. Seminars in Pediatric Neurology, 2007, 14, 15-25.	2.0	29
274	Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4246-4251.	7.1	244
275	Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation. Biochemical and Biophysical Research Communications, 2006, 351, 631-638.	2.1	180
276	Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnology Journal, 2006, 1, 258-269.	3.5	48
277	Detection of novel intracellular Oâ€synuclein oligomeric species by fluorescence lifetime imaging. FASEB Journal, 2006, 20, 2050-2057.	0.5	82
278	Yeast Cells as a Discovery Platform for Neurodegenerative Disease. Lecture Notes in Computer Science, 2005, , 102-102.	1.3	0
279	Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the <i>de novo</i> formation of the [<i>PSI</i> ⁺] prion in yeast and aggregation of Sup35 <i>in vitro</i> . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12934-12939.	7.1	203
280	Interactions Among α-Synuclein, Dopamine, and Biomembranes: Some Clues for Understanding Neurodegeneration in Parkinson's Disease. Journal of Molecular Neuroscience, 2004, 23, 023-034.	2.3	173
281	Molecular Genetics Approaches in Yeast to Study Amyloid Diseases. Journal of Molecular Neuroscience, 2004, 23, 049-060.	2.3	38
282	Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology. Science, 2003, 302, 1772-1775.	12.6	710
283	Prion protein gene polymorphisms in Saccharomyces cerevisiae. Molecular Microbiology, 2003, 49, 1005-1017.	2.5	85
284	Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or Â-Synuclein. Science, 2003, 302, 1769-1772.	12.6	405
285	Threonine 3 regulates Serine 13/16 phosphorylation in the huntingtin exon 1. Matters Select, 0, , .	3.0	2