Tiago Fleming Outeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984767/publications.pdf

Version: 2024-02-01

285 papers

22,617 citations

69 h-index 139 g-index

307 all docs

307 docs citations

times ranked

307

31998 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Sirtuin 2 Inhibitors Rescue \hat{l}_{\pm} -Synuclein-Mediated Toxicity in Models of Parkinson's Disease. Science, 2007, 317, 516-519.	12.6	995
3	\hat{l} ±-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation, 2011, 121, 715-725.	8.2	722
4	Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology. Science, 2003, 302, 1772-1775.	12.6	710
5	Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or Â-Synuclein. Science, 2003, 302, 1769-1772.	12.6	405
6	Formation of Toxic Oligomeric α-Synuclein Species in Living Cells. PLoS ONE, 2008, 3, e1867.	2.5	354
7	SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Molecular Medicine, 2013, 5, 344-352.	6.9	352
8	Direct quantification of CSF \hat{l}_{\pm} -synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Experimental Neurology, 2008, 213, 315-325.	4.1	334
9	Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4246-4251.	7.1	244
10	Alpha-synuclein: from secretion to dysfunction and death. Cell Death and Disease, 2012, 3, e350-e350.	6.3	239
11	Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson's Disease. PLoS ONE, 2011, 6, e25443.	2.5	235
12	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	3.6	228
13	α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nature Neuroscience, 2017, 20, 1569-1579.	14.8	223
14	Glyoxal as an alternative fixative to formaldehyde in immunostaining and superâ€resolution microscopy. EMBO Journal, 2018, 37, 139-159.	7.8	206
15	Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the <i>de novo </i> formation of the [<i>PSI </i> ⁺] prion in yeast and aggregation of Sup35 <i>In vitro </i> National Academy of Sciences of the United States of America, 2004, 101, 12934-12939.	7.1	203
16	Protein phosphorylation in neurodegeneration: friend or foe?. Frontiers in Molecular Neuroscience, 2014, 7, 42.	2.9	203
17	Dementia with Lewy bodies: an update and outlook. Molecular Neurodegeneration, 2019, 14, 5.	10.8	203
18	Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends in Pharmacological Sciences, 2015, 36, 756-768.	8.7	201

#	Article	IF	Citations
19	Small heat shock proteins protect against $\hat{l}\pm$ -synuclein-induced toxicity and aggregation. Biochemical and Biophysical Research Communications, 2006, 351, 631-638.	2.1	180
20	Autophagy modulates SNCA/ \hat{l} ±-synuclein release, thereby generating a hostile microenvironment. Autophagy, 2014, 10, 2171-2192.	9.1	174
21	Interactions Among α-Synuclein, Dopamine, and Biomembranes: Some Clues for Understanding Neurodegeneration in Parkinson's Disease. Journal of Molecular Neuroscience, 2004, 23, 023-034.	2.3	173
22	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	3 . 5	168
23	Small molecule inhibits \hat{l} ±-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10481-10486.	7.1	166
24	Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. Journal of Neurochemistry, 2007, 100, 070214184024010-???.	3.9	164
25	Structure, function and toxicity of alphaâ€synuclein: the Bermuda triangle in synucleinopathies. Journal of Neurochemistry, 2016, 139, 240-255.	3.9	163
26	Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. DMM Disease Models and Mechanisms, 2010, 3, 194-208.	2.4	159
27	Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.	8.5	158
28	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
29	CHIP Targets Toxic α-Synuclein Oligomers for Degradation. Journal of Biological Chemistry, 2008, 283, 17962-17968.	3.4	155
30	Glycation potentiates \hat{l}_{\pm} -synuclein-associated neurodegeneration in synucleinopathies. Brain, 2017, 140, 1399-1419.	7.6	153
31	The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO Journal, 2013, 32, 2603-2616.	7.8	149
32	The sour side of neurodegenerative disorders: the effects of protein glycation. Journal of Pathology, 2010, 221, 13-25.	4. 5	138
33	Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Human Molecular Genetics, 2019, 28, 31-50.	2.9	131
34	DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease. Cell Death and Disease, 2014, 5, e1350-e1350.	6.3	130
35	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	7.9	129
36	Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death and Disease, 2015, 6, e1994-e1994.	6.3	125

#	Article	IF	CITATIONS
37	Structural basis of kynurenine 3-monooxygenase inhibition. Nature, 2013, 496, 382-385.	27.8	124
38	Fasudil attenuates aggregation of α-synuclein in models of Parkinson's disease. Acta Neuropathologica Communications, 2016, 4, 39.	5.2	123
39	Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Human Molecular Genetics, 2017, 26, 2231-2246.	2.9	121
40	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	3.9	116
41	Tau Enhances α-Synuclein Aggregation and Toxicity in Cellular Models of Synucleinopathy. PLoS ONE, 2011, 6, e26609.	2.5	115
42	Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2014, 10, e1004302.	3.5	114
43	The mechanism of sirtuin 2–mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biology, 2017, 15, e2000374.	5.6	114
44	<scp>SARSâ€CoV</scp> â€2: At the Crossroad Between Aging and Neurodegeneration. Movement Disorders, 2020, 35, 716-720.	3.9	114
45	SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	9.1	113
46	Therapeutic role of sirtuins in neurodegenerative disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 363-369.	3.8	107
47	SIRT2 as a Therapeutic Target for Age-Related Disorders. Frontiers in Pharmacology, 2012, 3, 82.	3.5	107
48	The Sirtuin-2 Inhibitor AK7 Is Neuroprotective in Models of Parkinson's Disease but Not Amyotrophic Lateral Sclerosis and Cerebral Ischemia. PLoS ONE, 2015, 10, e0116919.	2.5	106
49	<scp>G</scp> lycation in <scp>P</scp> arkinson's disease and Alzheimer's disease. Movement Disorders, 2016, 31, 782-790.	3.9	104
50	Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. Frontiers in Neurology, 2018, 9, 347.	2.4	103
51	Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress and Chaperones, 2010, 15, 959-964.	2.9	99
52	Rab11 modulates \hat{i}_{\pm} -synuclein-mediated defects in synaptic transmission and behaviour. Human Molecular Genetics, 2015, 24, 1077-1091.	2.9	94
53	Small molecule-mediated stabilization of vesicle-associated helical \hat{l}_{\pm} -synuclein inhibits pathogenic misfolding and aggregation. Nature Communications, 2014, 5, 5857.	12.8	91
54	Prion protein gene polymorphisms in Saccharomyces cerevisiae. Molecular Microbiology, 2003, 49, 1005-1017.	2.5	85

#	Article	IF	CITATIONS
55	Seeding variability of different alpha synuclein strains in synucleinopathies. Annals of Neurology, 2019, 85, 691-703.	5. 3	85
56	Epigenetics in neurodegeneration: A new layer of complexity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 348-355.	4.8	84
57	α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiology of Disease, 2014, 70, 149-161.	4.4	84
58	Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Molecular and Cellular Neurosciences, 2014, 62, 51-59.	2.2	83
59	Detection of novel intracellular Oâ€synuclein oligomeric species by fluorescence lifetime imaging. FASEB Journal, 2006, 20, 2050-2057.	0.5	82
60	Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. Journal of Neurochemistry, 2013, 127, 438-452.	3.9	82
61	Impaired TrkB receptor signaling contributes to memory impairment in APP/PS1 mice. Neurobiology of Aging, 2012, 33, 1122.e23-1122.e39.	3.1	81
62	The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules, 2015, 5, 435-471.	4.0	79
63	Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson's disease. Scientific Reports, 2017, 7, 13713.	3.3	79
64	Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cellular and Molecular Neurobiology, 2018, 38, 1539-1550.	3.3	79
65	Spreading of $\hat{l}\pm$ -Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	2.9	79
66	Membrane binding, internalization, and sorting of alpha-synuclein in the cell. Acta Neuropathologica Communications, 2018, 6, 79.	5.2	78
67	Simple is good: yeast models of neurodegeneration. FEMS Yeast Research, 2010, 10, 970-979.	2.3	77
68	Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6506-E6515.	7.1	75
69	Cellular models of alphaâ€synuclein toxicity and aggregation. Journal of Neurochemistry, 2019, 150, 566-576.	3.9	75
70	Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLOS Currents, 2011, 3, RRN1210.	1.4	74
71	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	5.3	74
72	Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience, 2012, 220, 256-266.	2.3	73

#	Article	IF	Citations
73	The small GTPase Rab 11 co-localizes with \hat{A} -synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	2.9	73
74	Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Human Molecular Genetics, 2015, 24, 76-85.	2.9	73
75	Serum lipid alterations in GBA-associated Parkinson's disease. Parkinsonism and Related Disorders, 2017, 44, 58-65.	2.2	73
76	Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal, 2008, 3, 325-338.	3.5	72
77	Assessing the Subcellular Dynamics of Alpha-synuclein Using Photoactivation Microscopy. Molecular Neurobiology, 2013, 47, 1081-1092.	4.0	72
78	Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Experimental Neurology, 2017, 295, 77-87.	4.1	72
79	Modulating Alzheimer's Disease Through Caffeine: A Putative Link to Epigenetics. Journal of Alzheimer's Disease, 2011, 24, 161-171.	2.6	70
80	Insulinâ€like growth factorâ€l gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. European Journal of Neuroscience, 2016, 44, 2120-2128.	2.6	69
81	LRRK2 interactions with α-synuclein in Parkinson's disease brains and in cell models. Journal of Molecular Medicine, 2013, 91, 513-522.	3.9	68
82	Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration. Journal of Parkinson's Disease, 2013, 3, 415-459.	2.8	68
83	Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Scientific Reports, 2017, 7, 42942.	3.3	68
84	shRNA-Based Screen Identifies Endocytic Recycling Pathway Components That Act as Genetic Modifiers of Alpha-Synuclein Aggregation, Secretion and Toxicity. PLoS Genetics, 2016, 12, e1005995.	3.5	68
85	Pharmacological inhibition of PARP-1 reduces α-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochemical and Biophysical Research Communications, 2007, 357, 596-602.	2.1	67
86	The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Human Molecular Genetics, 2017, 26, 4105-4117.	2.9	67
87	Aggregate Clearance of α-Synuclein in Saccharomyces cerevisiae Depends More on Autophagosome and Vacuole Function Than on the Proteasome. Journal of Biological Chemistry, 2012, 287, 27567-27579.	3.4	66
88	Adenosine A _{2A} Receptors Modulate \hat{l} ±-Synuclein Aggregation and Toxicity. Cerebral Cortex, 2017, 27, bhv268.	2.9	66
89	(Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 2015, 24, 1717-1732.	2.9	66
90	Interplay between Sumoylation and Phosphorylation for Protection against α-Synuclein Inclusions. Journal of Biological Chemistry, 2014, 289, 31224-31240.	3.4	63

#	Article	IF	CITATIONS
91	Synucleinopathies: Where we are and where we need to go. Journal of Neurochemistry, 2020, 153, 433-454.	3.9	62
92	Antibodies against Alpha-Synuclein Reduce Oligomerization in Living Cells. PLoS ONE, 2011, 6, e27230.	2.5	61
93	Effects of alphaâ€synuclein postâ€translational modifications on metal binding. Journal of Neurochemistry, 2019, 150, 507-521.	3.9	60
94	α-Synuclein phosphorylation at serine 129 occurs after initial protein deposition and inhibits seeded fibril formation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109617119.	7.1	60
95	Dopamine-Induced Conformational Changes in Alpha-Synuclein. PLoS ONE, 2009, 4, e6906.	2.5	59
96	From the baker to the bedside: yeast models of Parkinson's disease. Microbial Cell, 2015, 2, 262-279.	3.2	59
97	Suppression of \hat{l}_{\pm} -synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Human Molecular Genetics, 2012, 21, 2432-2449.	2.9	58
98	βâ€ s ynuclein aggregates and induces neurodegeneration in dopaminergic neurons. Annals of Neurology, 2013, 74, 109-118.	5. 3	58
99	alpha-Synuclein and intracellular trafficking: impact on the spreading of Parkinson's disease pathology. Journal of Molecular Medicine, 2013, 91, 693-703.	3.9	55
100	The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Scientific Reports, 2016, 6, 31493.	3.3	55
101	Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells, 2021, 10, 375.	4.1	54
102	Small Molecules Detected by Second-Harmonic Generation Modulate the Conformation of Monomeric α-Synuclein and Reduce Its Aggregation in Cells. Journal of Biological Chemistry, 2015, 290, 27582-27593.	3.4	53
103	Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Molecular Neurobiology, 2018, 55, 8754-8763.	4.0	53
104	Parkinson Disease Mutant E46K Enhances α-Synuclein Phosphorylation in Mammalian Cell Lines, in Yeast, and in Vivo. Journal of Biological Chemistry, 2015, 290, 9412-9427.	3.4	52
105	Functional Gene Expression Profiling in Yeast Implicates Translational Dysfunction in Mutant Huntingtin Toxicity. Journal of Biological Chemistry, 2011, 286, 410-419.	3.4	51
106	Epigenetics in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 978, 363-390.	1.6	50
107	Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Experimental Neurology, 2017, 298, 162-171.	4.1	49
108	Yeast models of Parkinson's disease-associated molecular pathologies. Current Opinion in Genetics and Development, 2017, 44, 74-83.	3.3	49

#	Article	IF	CITATIONS
109	Mechanisms of alpha-synuclein toxicity: An update and outlook. Progress in Brain Research, 2020, 252, 91-129.	1.4	49
110	C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2016, 12, e1006098.	3.5	49
111	Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnology Journal, 2006, 1, 258-269.	3.5	48
112	Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Translational Neurodegeneration, 2019, 8, 18.	8.0	48
113	Contribution of Neuroepigenetics to Huntington's Disease. Frontiers in Human Neuroscience, 2017, 11, 17.	2.0	46
114	Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. Journal of Neuroscience, 2019, 39, 3752-3769.	3.6	46
115	Idebenone and Resveratrol Extend Lifespan and Improve Motor Function of HtrA2 Knockout Mice. PLoS ONE, 2011, 6, e28855.	2.5	45
116	Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7012-7017.	7.1	45
117	Knockout of Silent Information Regulator 2 (SIRT2) Preserves Neurological Function after Experimental Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 2080-2088.	4.3	45
118	Sirtuins: Common Targets in Aging and in Neurodegeneration. Current Drug Targets, 2010, 11, 1270-1280.	2.1	45
119	Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiology of Disease, 2018, 119, 121-135.	4.4	44
120	Inhibition of formation of \hat{l}_{\pm} -synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4065-4072.	2.4	43
121	MeCP2: a novel Huntingtin interactor. Human Molecular Genetics, 2014, 23, 1036-1044.	2.9	43
122	Alpha-Synuclein Regulates Neuronal Levels of Manganese and Calcium. ACS Chemical Neuroscience, 2015, 6, 1769-1779.	3.5	43
123	A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Frontiers in Neuroscience, 2016, 10, 511.	2.8	43
124	A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. Journal of Inorganic Biochemistry, 2017, 170, 160-168.	3.5	43
125	Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant Sod1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25991-26000.	7.1	43
126	SARS-CoV-2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging, 2020, 12, 18778-18789.	3.1	43

#	Article	IF	CITATIONS
127	The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease. Journal of Molecular Medicine, 2013, 91, 705-713.	3.9	42
128	Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 33-43.	2.8	41
129	Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies. Cell Reports, 2019, 28, 65-77.e6.	6.4	41
130	DJ-1 modulates aggregation and pathogenesis in models of Huntington's disease. Human Molecular Genetics, 2014, 23, 755-766.	2.9	40
131	LRRK2 Promotes Tau Accumulation, Aggregation and Release. Molecular Neurobiology, 2016, 53, 3124-3135.	4.0	40
132	Cellular Uptake of \hat{l}_{\pm} -Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of \hat{l}_{\pm} -Synuclein and Mediated via Fc \hat{l}_{\pm} 3 Receptors. Cellular and Molecular Neurobiology, 2017, 37, 121-131.	3.3	39
133	Molecular Genetics Approaches in Yeast to Study Amyloid Diseases. Journal of Molecular Neuroscience, 2004, 23, 049-060.	2.3	38
134	Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease. Human Molecular Genetics, 2014, 23, 3129-3137.	2.9	38
135	PLK2 Modulates α-Synuclein Aggregation in Yeast and Mammalian Cells. Molecular Neurobiology, 2013, 48, 854-862.	4.0	37
136	The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Research, 2018, 18, .	2.3	37
137	The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 5724.	4.1	37
138	Zooming into protein oligomerization in neurodegeneration using BiFC. Trends in Biochemical Sciences, 2010, 35, 643-651.	7.5	36
139	Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles. PLoS ONE, 2016, 11, e0157852.	2,5	36
140	Synphilin-1 Enhances $\hat{l}\pm$ -Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner. PLoS ONE, 2010, 5, e13700.	2.5	36
141	The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 2016, 4, 128.	5.2	35
142	Doxycycline inhibits \hat{l}_{\pm} -synuclein-associated pathologies in vitro and in vivo. Neurobiology of Disease, 2021, 151, 105256.	4.4	35
143	Â-Synuclein modifies mutant huntingtin aggregation and neurotoxicity in Drosophila. Human Molecular Genetics, 2015, 24, 1898-1907.	2.9	34
144	Biasing the native \hat{l}_{\pm} -synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. Redox Biology, 2019, 22, 101135.	9.0	34

#	Article	IF	Citations
145	The role of LRRK2 in cell signalling. Biochemical Society Transactions, 2019, 47, 197-207.	3.4	34
146	Epigenetics in Parkinson's and Alzheimer's Diseases. Sub-Cellular Biochemistry, 2013, 61, 507-525.	2.4	33
147	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	6.0	33
148	$\hat{l}\pm B$ -Crystallin overexpression in astrocytes modulates the phenotype of the BACHD mouse model of Huntington's disease. Human Molecular Genetics, 2016, 25, 1677-1689.	2.9	33
149	Sirtuin 2 enhances dopaminergic differentiation via the AKT/GSK-3 \hat{l}^2/\hat{l}^2 -catenin pathway. Neurobiology of Aging, 2017, 56, 7-16.	3.1	33
150	<i>In vitro</i> models of synucleinopathies: informing on molecular mechanisms and protective strategies. Journal of Neurochemistry, 2019, 150, 535-565.	3.9	33
151	The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Molecular Neurobiology, 2019, 56, 61-77.	4.0	33
152	Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Human Molecular Genetics, 2017, 26, 3763-3775.	2.9	32
153	Parkinson's disease-associated mutations in DJ-1 modulate its dimerization in living cells. Journal of Molecular Medicine, 2013, 91, 599-611.	3.9	31
154	Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Scientific Reports, 2020, 10, 6064.	3.3	31
155	Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathologica, 2021, 141, 511-526.	7.7	31
156	Mechanisms of Disease II: Cellular Protein Quality Control. Seminars in Pediatric Neurology, 2007, 14, 15-25.	2.0	29
157	αâ€Synuclein modifies huntingtin aggregation in living cells. FEBS Letters, 2012, 586, 7-12.	2.8	29
158	Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Human Molecular Genetics, 2016, 25, 275-290.	2.9	29
159	Effects of pharmacological modulators of \hat{l}_{\pm} -synuclein and tau aggregation and internalization. Scientific Reports, 2020, 10, 12827.	3.3	29
160	A 2A Râ€induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 2019, 67, 2329-2342.	4.9	28
161	Are genetic and idiopathic forms of Parkinson's disease the same disease?. Journal of Neurochemistry, 2020, 152, 515-522.	3.9	28
162	Glycation potentiates neurodegeneration in models of Huntington's disease. Scientific Reports, 2016, 6, 36798.	3.3	27

#	Article	IF	Citations
163	Synthesis and in vitro evaluation of fluorinated styryl benzazoles as amyloid-probes. Bioorganic and Medicinal Chemistry, 2011, 19, 7698-7710.	3.0	26
164	Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies. ACS Nano, 2015, 9, 11034-11041.	14.6	26
165	The yin and yang of α-synuclein-associated epigenetics in Parkinson's disease. Brain, 2016, 140, aww227.	7.6	26
166	Cerebral dopamine neurotrophic factor reduces $\hat{l}\pm$ -synuclein aggregation and propagation and alleviates behavioral alterations in \hat{A} vivo. Molecular Therapy, 2021, 29, 2821-2840.	8.2	26
167	Angiotensin II protects against \hat{l}_{\pm} -synuclein toxicity and reduces protein aggregation in vitro. Biochemical and Biophysical Research Communications, 2007, 363, 846-851.	2.1	25
168	Alzheimer's Disease: The Quest to Understand Complexity. Journal of Alzheimer's Disease, 2010, 21, 373-383.	2.6	25
169	Dopamine-depletion and increased α-synuclein load induce degeneration of cortical cholinergic fibers in mice. Journal of the Neurological Sciences, 2011, 310, 90-95.	0.6	25
170	Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson's Disease. Drugs and Aging, 2014, 31, 239-261.	2.7	25
171	Treatment with diphenyl–pyrazole compound anle138b/c reveals that α-synuclein protects melanoma cells from autophagic cell death. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4971-E4977.	7.1	25
172	Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathologica Communications, 2022, 10, .	5.2	24
173	Aggresome formation and segregation of inclusions influence toxicity of \hat{l}_{\pm} -synuclein and synphilin-1 in yeast. Biochemical Society Transactions, 2011, 39, 1476-1481.	3.4	23
174	The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Brain Research Bulletin, 2013, 90, 118-126.	3.0	23
175	A familial ATP13A2 mutation enhances alpha-synuclein aggregation and promotes cell death. Human Molecular Genetics, 2016, 25, ddw147.	2.9	23
176	Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Research Reviews, 2017, 40, 168-181.	10.9	23
177	Off-pathway <b<math>\hat{l}+-synuclein oligomers seem to alter\hat{l}+-synuclein turnover in a cell model but lack seeding capability<i>in vivo</i>. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2013, 20, 233-244.</b<math>	3.0	22
178	Copper(II) and the pathological H50Q \hat{l} ±-synuclein mutant: Environment meets genetics. Communicative and Integrative Biology, 2017, 10, e1270484.	1.4	22
179	Heatâ€mediated enrichment of αâ€synuclein from cells and tissue for assessing postâ€translational modifications. Journal of Neurochemistry, 2013, 126, 673-684.	3.9	21
180	Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus, 2017, 27, 435-449.	1.9	21

#	Article	IF	CITATIONS
181	Rapidly Signalâ€enhanced Metabolites for Atomic Scale Monitoring of Living Cells with Magnetic Resonance. Chemistry Methods, 2022, 2, .	3.8	21
182	Mutant A53T α-Synuclein Improves Rotarod Performance Before Motor Deficits and Affects Metabolic Pathways. NeuroMolecular Medicine, 2017, 19, 113-121.	3.4	20
183	(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Scientific Reports, 2018, 8, 6965.	3.3	20
184	Sensing αâ€Synuclein From the Outside via the Prion Protein: Implications for Neurodegeneration. Movement Disorders, 2018, 33, 1675-1684.	3.9	19
185	Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. Journal of Huntington's Disease, 2019, 8, 245-256.	1.9	19
186	Epigenetics of the Synapse in Neurodegeneration. Current Neurology and Neuroscience Reports, 2019, 19, 72.	4.2	19
187	αâ€Synuclein toxicity in yeast and human cells is caused by cell cycle reâ€entry and autophagy degradation of ribonucleotide reductase 1. Aging Cell, 2019, 18, e12922.	6.7	19
188	Attention-deficit/hyperactivity disorder is associated with reduced levels of serum low-density lipoprotein cholesterol in adolescents. Data from the population-based German KiGGS study. World Journal of Biological Psychiatry, 2019, 20, 496-504.	2.6	19
189	X1INH, an improved next-generation affinity-optimized hydrazonic ligand, attenuates abnormal copper(<scp>i</scp>)/copper(<scp>ii</scp>)-α-Syn interactions and affects protein aggregation in a cellular model of synucleinopathy. Dalton Transactions, 2020, 49, 16252-16267.	3.3	19
190	DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of \hat{l}_{\pm} -synuclein toxicity and oligomerization. PLoS Genetics, 2021, 17, e1009407.	3.5	19
191	Detection of Compounds That Rescue Rab1â€Synuclein Toxicity. Methods in Enzymology, 2008, 439, 339-351.	1.0	18
192	Isostructural Re(<scp>i</scp>)/ ^{99m} Tc(<scp>i</scp>) tricarbonyl complexes for cancer theranostics. Organic and Biomolecular Chemistry, 2015, 13, 5182-5194.	2.8	18
193	Implications of fALS Mutations on Sod1 Function and Oligomerization in Cell Models. Molecular Neurobiology, 2018, 55, 5269-5281.	4.0	18
194	Hsp27 reduces glycationâ€induced toxicity and aggregation of alphaâ€synuclein. FASEB Journal, 2020, 34, 6718-6728.	0.5	18
195	Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Movement Disorders, 2021, 36, 340-346.	3.9	18
196	Synthesis and evaluation of esterified Hsp70 agonists in cellular models of protein aggregation and folding. Bioorganic and Medicinal Chemistry, 2019, 27, 79-91.	3.0	17
197	Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sciences, 2020, 10, 858.	2.3	17
198	Impairment of the septal cholinergic neurons in MPTP-treated A30P α-synuclein mice. Neurobiology of Aging, 2013, 34, 589-601.	3.1	16

#	Article	IF	CITATIONS
199	Identification of antiparkinsonian drugs in the 6-hydroxydopamine zebrafish model. Pharmacology Biochemistry and Behavior, 2020, 189, 172828.	2.9	16
200	Traffic jams and the complex role of \hat{l}_{\pm} -Synuclein aggregation in Parkinson disease. Small GTPases, 2017, 8, 78-84.	1.6	15
201	Binding Modes of Phthalocyanines to Amyloid \hat{l}^2 Peptide and Their Effects on Amyloid Fibril Formation. Biophysical Journal, 2018, 114, 1036-1045.	0.5	15
202	LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders?. Biochemical Society Transactions, 2019, 47, 827-838.	3.4	15
203	Endogenous Levels of Alpha-Synuclein Modulate Seeding and Aggregation in Cultured Cells. Molecular Neurobiology, 2022, 59, 1273-1284.	4.0	15
204	Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. Npj Parkinson's Disease, 2022, 8, 51.	5. 3	15
205	IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 459-467.	3.6	14
206	Doxycycline Interferes With Tau Aggregation and Reduces Its Neuronal Toxicity. Frontiers in Aging Neuroscience, 2021, 13, 635760.	3.4	14
207	Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiology of Disease, 2022, 168, 105696.	4.4	14
208	Live-cell imaging of p53 interactions using a novel Venus-based bimolecular fluorescence complementation system. Biochemical Pharmacology, 2013, 85, 745-752.	4.4	13
209	Cellular Prion Protein Mediates αâ€Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Movement Disorders, 2022, 37, 39-51.	3.9	13
210	A new MAP-Rasagiline conjugate reduces $\hat{l}\pm$ -synuclein inclusion formation in a cell model. Pharmacological Reports, 2020, 72, 456-464.	3.3	12
211	Dysfunction of <scp>RAB39Bâ€</scp> Mediated Vesicular Trafficking in Lewy Body Diseases. Movement Disorders, 2021, 36, 1744-1758.	3.9	12
212	Small Molecule Fisetin Modulates Alpha–Synuclein Aggregation. Molecules, 2021, 26, 3353.	3.8	12
213	Glycation modulates alpha-synuclein fibrillization kinetics: A sweet spot for inhibition. Journal of Biological Chemistry, 2022, 298, 101848.	3.4	12
214	Current and Future Therapeutic Strategies for Parkinsons Disease. Current Pharmaceutical Design, 2009, 15, 3968-3976.	1.9	11
215	High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics, 2012, 6, 014109.	2.4	11
216	ATP13A2 and Alpha-synuclein: a Metal Taste in Autophagy. Experimental Neurobiology, 2014, 23, 314-323.	1.6	11

#	Article	IF	CITATIONS
217	Synthesis and Biological Evaluation of Novel 2â€Aryl Benzimidazoles as Chemotherapeutic Agents. Journal of Heterocyclic Chemistry, 2017, 54, 255-267.	2.6	11
218	Editorial: Protein Misfolding and Spreading Pathology in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 12, 312.	2.9	11
219	RAB39B is redistributed in dementia with Lewy bodies and is sequestered within $\hat{al^2}$ plaques and Lewy bodies. Brain Pathology, 2021, 31, 120-132.	4.1	11
220	JM-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson's disease: Mitochondrial protection and antioxidant properties. NeuroToxicology, 2021, 82, 89-98.	3.0	11
221	Imaging Protein Oligomerization in Neurodegeneration Using Bimolecular Fluorescence Complementation. Methods in Enzymology, 2012, 506, 157-174.	1.0	10
222	Monitoring αâ€synuclein multimerization <i>in vivo</i> . FASEB Journal, 2019, 33, 2116-2131.	0.5	10
223	Molecular characterization of an aggregation-prone variant of alpha-synuclein used to model synucleinopathies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140298.	2.3	10
224	From <scp>iPS</scp> Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Movement Disorders, 2021, 36, 832-841.	3.9	10
225	Increased expression of myelin-associated genes in frontal cortex of <i>SNCA</i> overexpressing rats and Parkinson's disease patients. Aging, 2020, 12, 18889-18906.	3.1	10
226	Monitoring the interactions between alpha-synuclein and Tau in vitro and in vivo using bimolecular fluorescence complementation. Scientific Reports, 2022, 12, 2987.	3.3	10
227	Identification and quantitative analysis of human transthyretin variants in human serum by Fourier transform ion-cyclotron resonance mass spectrometry. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis. 2009. 16. 201-207.	3.0	9
228	Phycocyanin protects against Alpha-Synuclein toxicity in yeast. Journal of Functional Foods, 2017, 38, 553-560.	3.4	9
229	The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer's Disease Pathophysiology. Frontiers in Pharmacology, 2020, 11, 985.	3.5	9
230	Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants, 2020, 9, 789.	5.1	9
231	MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile. Frontiers in Cellular Neuroscience, 2021, 15, 641264.	3.7	9
232	JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. NeuroToxicology, 2021, 87, 70-85.	3.0	9
233	Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain, 2022, 145, 1257-1263.	7.6	9
234	Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines, 2022, 10, 1141.	3.2	9

#	Article	IF	Citations
235	Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin. Molecular and Cellular Endocrinology, 2016, 434, 238-249.	3.2	8
236	The influence of dopamine-beta-hydroxylase and catechol O-methyltransferase gene polymorphism on the efficacy of insulin detemir therapy in patients with type 2 diabetes mellitus. Diabetology and Metabolic Syndrome, 2017, 9, 97.	2.7	8
237	Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Frontiers in Molecular Neuroscience, 2021, 14, 659926.	2.9	8
238	Editorial on Special Topic: Sirtuins in Metabolism, Aging, and Disease. Frontiers in Pharmacology, 2012, 3, 71.	3.5	7
239	In silico analysis of the aggregation propensity of the SARS-CoV-2 proteome: Insight into possible cellular pathologies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140693.	2.3	7
240	Aromaticity at position 39 in αâ€synuclein: A modulator of amyloid fibril assembly and membraneâ€bound conformations. Protein Science, 2022, 31, .	7.6	7
241	A nonâ€invasive method based on saliva to characterize transthyretin in familial amyloidotic polyneuropathy patients using FTâ€iCR highâ€resolution MS. Proteomics - Clinical Applications, 2010, 4, 674-678.	1.6	6
242	FlAsH illuminates $\hat{Al^2}$ aggregation. Nature Chemical Biology, 2011, 7, 581-582.	8.0	6
243	Editorial: Molecular Chaperones and Neurodegeneration. Frontiers in Neuroscience, 2017, 11, 565.	2.8	6
244	The Interplay Between Proteostasis Systems and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 223-236.	1.6	6
245	Impaired Proteostasis Contributes to Renal Tubular Dysgenesis. PLoS ONE, 2011, 6, e20854.	2.5	6
246	SIRT2 in age-related neurodegenerative disorders. Aging, 2018, 10, 295-296.	3.1	6
247	The small aromatic compound SynuClean-D inhibits theÂaggregation and seeded polymerization of multiple α-synuclein strains. Journal of Biological Chemistry, 2022, 298, 101902.	3.4	6
248	Assessment of the Efficacy of Solutes from Extremophiles on Protein Aggregation in Cell Models of Huntington's and Parkinson's Diseases. Neurochemical Research, 2011, 36, 1005-1011.	3.3	5
249	Neuromelanin magnetic resonance imaging of the substantia nigra in ⟨i⟩LRRK2⟨ i⟩â€related Parkinson's disease. Movement Disorders, 2017, 32, 1331-1333.	3.9	5
250	Protein trapping leads to altered synaptic proteostasis in synucleinopathies. FEBS Journal, 2020, 287, 5294-5303.	4.7	5
251	Emerging concepts in synucleinopathies. Acta Neuropathologica, 2021, 141, 469-470.	7.7	5
252	Production of Recombinant Alpha-Synuclein: Still No Standardized Protocol in Sight. Biomolecules, 2022, 12, 324.	4.0	5

#	Article	IF	CITATIONS
253	Editorial [Hot Topic: Drug Discovery for CNS Disorders: From Bench to Bedside (Guest Editor: Tiago) Tj ETQq1	1 0.784314 1.4	l rg₽T /Overloc
254	Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Research, 2018, 18 , .	2.3	4
255	Yeast-Based Screens to Target Alpha-Synuclein Toxicity. Methods in Molecular Biology, 2019, 1948, 145-156.	0.9	4
256	Alpha-Synuclein Antibody Characterization: Why Semantics Matters. Molecular Neurobiology, 2021, 58, 2202-2203.	4.0	4
257	Drug Targeting of alpha-Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 41-9.	4.6	4
258	Drug Targeting of \hat{l}_{\pm} -Synuclein Oligomerization in Synucleinopathies. Perspectives in Medicinal Chemistry, 2008, 2, 1177391X0800200.	4.6	3
259	Synuclein Meeting 2019: where we are and where we need to go. Journal of Neurochemistry, 2019, 150, 462-466.	3.9	3
260	Reply to: "Parkinson's Disease and COVIDâ€19: Do We Need to Be More Patient?― Movement Disorders, 2021, 36, 278-279.	3.9	3
261	Protein Aggregation Disorders. , 2007, , 111-123.		2
262	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
263	Sirtuins in Brain and Neurodegenerative Disease. , 2018, , 175-195.		2
264	The synthetic cannabinoid JWH-018 modulates Saccharomyces cerevisiae energetic metabolism. FEMS Yeast Research, 2019, 19, .	2.3	2
265	Tapentadol Prevents Motor Impairments in a Mouse Model of Dyskinesia. Neuroscience, 2020, 424, 58-71.	2.3	2
266	Synaptic Dysfunction in Parkinson's Disease: From Protein Misfolding to Functional Alterations. , 2011, , 257-267.		2
267	Threonine 3 regulates Serine 13/16 phosphorylation in the huntingtin exon 1. Matters Select, 0, , .	3.0	2
268	\hat{l}^2 -Defensin Genomic Copy Number Does Not Influence the Age of Onset in Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 107-124.	1.9	1
269	Analysis of Protein Oligomeric Species by Sucrose Gradients. Methods in Molecular Biology, 2016, 1449, 331-339.	0.9	1
270	Investigating targets for neuropharmacological intervention by molecular dynamics simulations. Biochemical Society Transactions, 2019, 47, 909-918.	3.4	1

#	Article	IF	CITATIONS
271	The courage to change science. EMBO Reports, 2020, 21, e50124.	4.5	1
272	Alphaâ€synuclein oligomerization and aggregation: A model will always be a model. Journal of Neurochemistry, 2021, 157, 889-890.	3.9	1
273	A water-soluble manganese(II) octanediaoate/phenanthroline complex acts as an antioxidant and attenuates alpha-synuclein toxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166475.	3.8	1
274	Yeast Cells as a Discovery Platform for Neurodegenerative Disease. Lecture Notes in Computer Science, 2005, , 102-102.	1.3	0
275	From Mad Cows to Neurotic Yeast: Novel Molecular Approaches to Understand Neurodegeneration. Microscopy and Microanalysis, 2008, 14, 105-106.	0.4	0
276	Upcoming Meetings Related to Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 135-135.	1.9	0
277	Integration of Single Cell Traps, Chemical Gradient Generator and Photosensors in a Microfluidic Platform for the Study of Alpha-Synuclein Toxicity in Yeast. Procedia Engineering, 2014, 87, 92-95.	1.2	0
278	Studying the Molecular Determinants of Protein Oligomerization in Neurodegenerative Disorders by Bimolecular Fluorescence Complementation., 2014,, 133-145.		0
279	Modeling Neuronal Pathology in Yeast: Insights into the Molecular Basis of Parkinson's Disease. Israel Journal of Chemistry, 2015, 55, 1252-1259.	2.3	0
280	B7â€Glycation potentiates neurodegeneration in models of huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A11.2-A11.	1.9	0
281	Synuclein misfolding as a therapeutic target. , 2017, , 21-47.		O
282	Reply to: SARSâ€CoVâ€⊋ as a Potential Trigger of Neurodegenerative Diseases. Movement Disorders, 2020, 35, 1106-1107.	3.9	0
283	Doxycycline Therapeutic Approach in Parkinson's Disease and L-DOPA-Induced Dyskinesia. , 2021, , 1-21.		0
284	Alpha-synuclein spreading mechanisms in Parkinson's disease: The role of membrane receptors. International Review of Movement Disorders, 2021, 2, 1-63.	0.1	0
285	Editorial for the Special Issue "Adaptation, Aging, and Cell Death in Yeast Stress Response: Models, Mechanisms and Applications― Microorganisms, 2022, 10, 1126.	3.6	O