
Ling-Zhao Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984292/publications.pdf Version: 2024-02-01

LINC-ZHAO KONC

#	Article	IF	CITATIONS
1	Efficient upgrading of polyolefin plastics into C ₅ –C ₁₂ gasoline alkanes over a Pt/W/Beta catalyst. Sustainable Energy and Fuels, 2022, 6, 271-275.	4.9	14
2	A comprehensive study of indole catalytic hydrodenitrogenation under hydrothermal conditions. AICHE Journal, 2022, 68, e17531.	3.6	5
3	Microwave-induced controlled-isomerization during glucose conversion into lactic acid over a Sn-beta catalyst. Sustainable Energy and Fuels, 2022, 6, 1264-1268.	4.9	6
4	Efficient one-pot tandem catalysis of glucose into 1,1,2-trimethoxyethane over W-Beta catalysts. Sustainable Energy and Fuels, 2022, 6, 1051-1057.	4.9	4
5	Advanced catalytic CO ₂ hydrogenation on Ni/ZrO ₂ with light induced oxygen vacancy formation in photothermal conditions at medium-low temperatures. Catalysis Science and Technology, 2022, 12, 4740-4752.	4.1	3
6	Microwave-assisted low-temperature biomass pyrolysis: from mechanistic insights to pilot scale. Green Chemistry, 2021, 23, 821-827.	9.0	18
7	Continuously efficient hydrodeoxygenation of glycerol into 1,3-propanediol over Pt/WO _x /beta catalysts. Sustainable Energy and Fuels, 2021, 5, 1747-1755.	4.9	4
8	γ-Valerolactone-introduced controlled-isomerization of glucose for lactic acid production over an Sn-Beta catalyst. Green Chemistry, 2021, 23, 2634-2639.	9.0	24
9	Production of organic carboxylic acids by hydrothermal conversion of electron beam irradiation pretreated wheat straw. Biomass Conversion and Biorefinery, 2020, 10, 997-1006.	4.6	6
10	Highly efficient production of lactic acid from xylose using Sn-beta catalysts. Green Chemistry, 2020, 22, 7333-7336.	9.0	42
11	Catalyst Design for Selective Hydrodeoxygenation of Glycerol to 1,3-Propanediol. ACS Catalysis, 2020, 10, 15217-15226.	11.2	39
12	Continuous Conversion of Glucose into Methyl Lactate over the Sn-Beta Zeolite: Catalytic Performance and Activity Insight. Industrial & Engineering Chemistry Research, 2020, 59, 17365-17372.	3.7	17
13	Efficient one-pot valorization of ethanol to 1-butanol over an earth-abundant Ni–MgO catalyst under mild conditions. Sustainable Energy and Fuels, 2020, 4, 1612-1615.	4.9	15
14	Revealing the roles of components in glucose selective hydrogenation into 1,2-propanediol and ethylene glycol over Ni-MnO -ZnO catalysts. Journal of Energy Chemistry, 2019, 38, 15-19.	12.9	14
15	Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation. Journal of Hazardous Materials, 2019, 377, 341-348.	12.4	45
16	Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance and mechanistic insights. Sustainable Energy and Fuels, 2019, 3, 1163-1171.	4.9	36
17	Hydrothermal Carbonization of Microalgae (Chlorococcum sp.) for Porous Carbons With High Cr(VI) Adsorption Performance. Applied Biochemistry and Biotechnology, 2018, 186, 414-424.	2.9	37
18	Revealing low temperature microwaveâ€assisted pyrolysis kinetic behaviors and dielectric properties of biomass components. AICHE Journal, 2018, 64, 2124-2134.	3.6	15

Ling-Zhao Kong

#	Article	IF	CITATIONS
19	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37046-37056.	8.0	38
20	Mn-promoted hydrogenation of microalgae (Chlorococcum sp.) to 1,2-propanediol and ethylene glycol over Ni-ZnO catalysts. Applied Catalysis A: General, 2018, 565, 34-45.	4.3	13
21	Microwave-assisted in-situ elimination of primary tars over biochar: Low temperature behaviours and mechanistic insights. Bioresource Technology, 2018, 267, 333-340.	9.6	22
22	Formic Acidâ€Induced Controlledâ€Release Hydrolysis of Microalgae (<i>Scenedesmus</i>) to Lactic Acid over Snâ€Beta Catalyst. ChemSusChem, 2018, 11, 2492-2496.	6.8	24
23	Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis. Bioresource Technology, 2017, 238, 109-115.	9.6	51
24	Mechanism of Microwaveâ€Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations. ChemSusChem, 2017, 10, 3040-3043.	6.8	13
25	Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density. Energies, 2017, 10, 2094.	3.1	16
26	Catalytic conversion of glucose into alkanediols over nickel-based catalysts: a mechanism study. RSC Advances, 2016, 6, 62747-62753.	3.6	8
27	Microwave-assisted gasification of rice straw pyrolytic biochar promoted by alkali and alkaline earth metals. Journal of Analytical and Applied Pyrolysis, 2015, 112, 173-179.	5.5	54
28	Structureâ€Dependent Selective Hydrogenation of α,βâ€Unsaturated Aldehydes over Platinum Nanocrystals Decorated with Nickel. ChemPlusChem, 2014, 79, 1258-1262.	2.8	12
29	Characteristics and pyrolysis dynamic behaviors of hydrothermally treated micro crystalline cellulose. Journal of Analytical and Applied Pyrolysis, 2013, 100, 67-74.	5.5	25
30	Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 2011, 35, 956-968.	5.7	158
31	Hydrothermal catalytic conversion of biomass for lactic acid production. Journal of Chemical Technology and Biotechnology, 2008, 83, 383-388.	3.2	88