
James L Kirkland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7983487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extending human healthspan and longevity: a symposium report. Annals of the New York Academy of Sciences, 2022, 1507, 70-83.	3.8	18
2	Role of senescence in the chronic health consequences of COVID-19. Translational Research, 2022, 241, 96-108.	5.0	25
3	Senescence in obesity. , 2022, , 289-308.		3
4	Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metabolism, 2022, 34, 75-89.e8.	16.2	68
5	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S34-S46.	2.1	8
6	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
7	Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine, 2022, 77, 103912.	6.1	27
8	Targeted clearance of <i>p21</i> ―but not <i>p16</i> â€positive senescent cells prevents radiationâ€induced osteoporosis and increased marrow adiposity. Aging Cell, 2022, 21, e13602.	6.7	40
9	Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Experimental Gerontology, 2022, 163, 111798.	2.8	8
10	Selective Vulnerability of Senescent Glioblastoma Cells to BCL-XL Inhibition. Molecular Cancer Research, 2022, 20, 938-948.	3.4	22
11	<pre><scp>TNF</scp>â€i±/<scp>lFN</scp>â€i³ synergy amplifies senescenceâ€associated inflammation and <scp>SARSâ€CoV</scp>â€2 receptor expression via hyperâ€activated <scp>JAK</scp>/<scp>STAT1</scp>. Aging Cell, 2022, 21, .</pre>	6.7	31
12	Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. Journal of the National Cancer Institute, 2021, 113, 112-122.	6.3	57
13	New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1481-e1487.	3.6	67
14	Mechanisms of vascular dysfunction in the interleukin-10–deficient murine model of preeclampsia indicate nitric oxide dysregulation. Kidney International, 2021, 99, 646-656.	5.2	10
15	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annual Review of Pharmacology and Toxicology, 2021, 61, 779-803.	9.4	151
16	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	6.7	186
17	Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology, 2021, 162, .	2.8	21
18	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. Journal of the National Cancer Institute, 2021, 113, 1285-1298.	6.3	156

#	Article	IF	CITATIONS
19	Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes, 2021, 70, 1561-1574.	0.6	12
20	KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nature Aging, 2021, 1, 454-472.	11.6	31
21	Senescent cells in human adipose tissue: A crossâ€sectional study. Obesity, 2021, 29, 1320-1327.	3.0	18
22	Senolytics reduce coronavirus-related mortality in old mice. Science, 2021, 373, .	12.6	184
23	Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. EBioMedicine, 2021, 70, 103536.	6.1	20
24	Fisetin for <scp>COVID</scp> â€19 in skilled nursing facilities: Senolytic trials in the <scp>COVID</scp> era. Journal of the American Geriatrics Society, 2021, 69, 3023-3033.	2.6	35
25	Accelerated aging in older cancer survivors. Journal of the American Geriatrics Society, 2021, 69, 3077-3080.	2.6	15
26	Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mechanisms of Ageing and Development, 2021, 198, 111548.	4.6	39
27	Frailty in CKD and Transplantation. Kidney International Reports, 2021, 6, 2270-2280.	0.8	33
28	SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging, 2021, 13, 21838-21854.	3.1	51
29	Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Communications Biology, 2021, 4, 61.	4.4	35
30	Strategies for targeting senescent cells in human disease. Nature Aging, 2021, 1, 870-879.	11.6	192
31	An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nature Aging, 2021, 1, 962-973.	11.6	61
32	Strategies for late phase preclinical and early clinical trials of senolytics. Mechanisms of Ageing and Development, 2021, 200, 111591.	4.6	48
33	Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clinic Proceedings, 2021, 96, 3021-3029.	3.0	13
34	Obesity, Senescence, and Senolytics. Handbook of Experimental Pharmacology, 2021, , 165-180.	1.8	10
35	The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nature Metabolism, 2021, 3, 1706-1726.	11.9	99
36	Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. Advanced Science, 2020, 7, 2002611.	11.2	70

#	Article	IF	CITATIONS
37	Bridging the geroscience chasm between bench and bedside. Gerontology and Geriatrics Education, 2020, , 1-7.	0.8	0
38	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metabolism, 2020, 2, 1284-1304.	11.9	157
39	Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 2020, 12, 2134.	3.7	134
40	Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nature Communications, 2020, 11, 4289.	12.8	125
41	The role of cellular senescence in ageing and endocrine disease. Nature Reviews Endocrinology, 2020, 16, 263-275.	9.6	276
42	Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. American Journal of Physiology - Renal Physiology, 2020, 318, F1167-F1176.	2.7	27
43	Discovery, development, and future application of senolytics: theories and predictions. FEBS Journal, 2020, 287, 2418-2427.	4.7	100
44	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell, 2020, 19, e13106.	6.7	51
45	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapyâ€Related Bone Loss. Journal of Bone and Mineral Research, 2020, 35, 1119-1131.	2.8	74
46	Reducing Senescent Cell Burden in Aging and Disease. Trends in Molecular Medicine, 2020, 26, 630-638.	6.7	102
47	Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 197.	3.7	79
48	Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Translational Research, 2019, 213, 112-123.	5.0	78
49	Creating the Next Generation of Translational Geroscientists. Journal of the American Geriatrics Society, 2019, 67, 1934-1939.	2.6	13
50	Cellular senescence: at the nexus between ageing and diabetes. Diabetologia, 2019, 62, 1835-1841.	6.3	170
51	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biology of Sex Differences, 2019, 10, 49.	4.1	49
52	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.	6.1	697
53	Therapeutic Approaches to Aging—Reply. JAMA - Journal of the American Medical Association, 2019, 321, 901.	7.4	4
54	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. Journal of Bone and Mineral Research, 2019, 34, 1407-1418.	2.8	77

#	Article	IF	CITATIONS
55	Targeting senescent cells alleviates obesityâ€induced metabolic dysfunction. Aging Cell, 2019, 18, e12950.	6.7	395
56	Agedâ€senescent cells contribute to impaired heart regeneration. Aging Cell, 2019, 18, e12931.	6.7	202
57	The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochemical and Biophysical Research Communications, 2019, 513, 486-493.	2.1	90
58	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307
59	Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open Diabetes Research and Care, 2019, 7, e000720.	2.8	36
60	Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 2019, 99, 427-511.	28.8	767
61	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.	16.2	293
62	Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 2019, 40, 554-563.	6.1	746
63	Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 51-60.	2.9	56
64	Inhibiting Cellular Senescence: A New Therapeutic Paradigm for Age-Related Osteoporosis. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1282-1290.	3.6	93
65	Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 939-945.	3.6	92
66	Targeting senescent cholangiocytes and activated fibroblasts with Bâ€cell lymphomaâ€extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2â^'/â^') mice. Hepatology, 2018, 67, 247-259.	7.3	99
67	Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Seminars in Immunology, 2018, 40, 101275.	5.6	285
68	Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. Journal of Clinical Oncology, 2018, 36, 2206-2215.	1.6	99
69	Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 2018, 36, 18-28.	6.1	554
70	Aging, Cell Senescence, and Chronic Disease. JAMA - Journal of the American Medical Association, 2018, 320, 1319.	7.4	214
71	The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. American Journal of Physiology - Renal Physiology, 2018, 315, F1493-F1499.	2.7	26
72	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	30.7	1,384

#	Article	IF	CITATIONS
73	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw154.	3.6	163
74	Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 2017, 8, 14532.	12.8	1,008
75	Cellular Senescence: A Translational Perspective. EBioMedicine, 2017, 21, 21-28.	6.1	690
76	Report: NIA Workshop on Measures of Physiologic Resiliencies in Human Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 980-990.	3.6	111
77	Cellular senescence drives age-dependent hepatic steatosis. Nature Communications, 2017, 8, 15691.	12.8	673
78	Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 2017, 23, 1072-1079.	30.7	754
79	Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 2017, 8, 422.	12.8	466
80	Biology of premature ageing in survivors of cancer. ESMO Open, 2017, 2, e000250.	4.5	148
81	New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging, 2017, 9, 955-963.	3.1	469
82	The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 2017, 65, 2297-2301.	2.6	416
83	TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging, 2017, 9, 2411-2435.	3.1	95
84	Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 2016, 31, 1920-1929.	2.8	352
85	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacological Research, 2016, 111, 152-154.	7.1	54
86	Resilience in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1407-1414.	3.6	70
87	ldentification of a novel senolytic agent, navitoclax, targeting the Bclâ€⊋ family of antiâ€apoptotic factors. Aging Cell, 2016, 15, 428-435.	6.7	717
88	Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 2016, 15, 973-977.	6.7	540
89	Evaluating Health Span in Preclinical Models of Aging and Disease: Guidelines, Challenges, and Opportunities for Geroscience. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1395-1406.	3.6	44
90	Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes, 2016, 65, 1606-1615.	0.6	185

#	Article	IF	CITATIONS
91	Translating the Science of Aging into Therapeutic Interventions. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025908.	6.2	56
92	Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Experimental Gerontology, 2016, 86, 97-105.	2.8	235
93	Cellular Senescence and the Biology of Aging, Disease, and Frailty. Nestle Nutrition Institute Workshop Series, 2015, 83, 11-18.	0.1	117
94	Targeting senescent cells enhances adipogenesis and metabolic function in old age. ELife, 2015, 4, e12997.	6.0	436
95	Clinical strategies and animal models for developing senolytic agents. Experimental Gerontology, 2015, 68, 19-25.	2.8	125
96	JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6301-10.	7.1	543
97	The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14, 644-658.	6.7	1,534
98	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015, 64, 2289-2298.	0.6	294
99	Growth hormone in adipose dysfunction and senescence. Oncotarget, 2015, 6, 10667-10668.	1.8	6
100	Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. Journal of Assisted Reproduction and Genetics, 2014, 31, 1259-1267.	2.5	27
101	Insulinâ€like growth factorâ€1 regulates the <scp>SIRT</scp> 1â€p53 pathway in cellular senescence. Aging Cell, 2014, 13, 669-678.	6.7	146
102	Deleted in <scp>B</scp> reast <scp>C</scp> ancer 1 regulates cellular senescence during obesity. Aging Cell, 2014, 13, 951-953.	6.7	23
103	Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 324-328.	2.5	215
104	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	3.1	107
105	Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. Journal of Clinical Investigation, 2013, 123, 966-972.	8.2	1,326
106	Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479, 232-236.	27.8	2,806
107	Fat tissue, aging, and cellular senescence. Aging Cell, 2010, 9, 667-684.	6.7	834
108	Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors. Diabetes, 2010, 59, 2513-2521.	0.6	140

#	Article	IF	CITATIONS
109	Aging, Depot Origin, and Preadipocyte Gene Expression. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 242-251.	3.6	76