
David B Amabilino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of the optical properties of soluble N-alkylated 4-pyridyl diketopyrrolopyrrole derivatives. Dyes and Pigments, 2022, 197, 109836.	3.7	4
2	Imaging deposition-dependent supramolecular chiral organisation. Chemical Communications, 2022, 58, 4468-4471.	4.1	6
3	Low-Temperature Sintering of <scp>l</scp> -Alanine-Functionalized Metallic Copper Particles Affording Conductive Films with Excellent Oxidative Stability. ACS Applied Electronic Materials, 2022, 4, 2502-2515.	4.3	1
4	Submolecular Resolution Imaging of P3HT:PCBM Nanostructured Films by Atomic Force Microscopy: Implications for Organic Solar Cells. ACS Applied Nano Materials, 2022, 5, 13794-13804.	5.0	4
5	Chirality from scratch: enantioselective adsorption in geometrically controlled lateral nanoconfinement. Chemical Communications, 2021, 57, 61-64.	4.1	6
6	Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 2021, 587, 150-161.	9.4	16
7	Solid state structure and properties of phenyl diketopyrrolopyrrole derivatives. CrystEngComm, 2021, 23, 1796-1814.	2.6	13
8	Supramolecular block copolymers incorporating chiral and achiral chromophores for the bottom-up assembly of nanomaterials. , 2021, , 901-914.		0
9	An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels. Materials and Design, 2021, 206, 109792.	7.0	10
10	Stereochemistry and Twisted Crystals. Israel Journal of Chemistry, 2021, 61, 629-644.	2.3	11
11	Singlet oxygen generation from porphyrin-functionalized hexahedral polysilicon microparticles. , 2021, , 867-877.		0
12	Light-controlled micron-scale molecular motion. Nature Chemistry, 2021, 13, 1200-1206.	13.6	24
13	Hierarchies in the Transfer of Molecular to Supramolecular Chirality. , 2021, , 1-58.		0
14	Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 2020, 32, 5958-5972.	6.7	8
15	Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films. Nature Communications, 2020, 11, 6137.	12.8	73
16	Microfluidicâ€Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 2001308.	19.5	12
17	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie, 2020, 132, 19355-19363.	2.0	5
18	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 19193-19201.	13.8	19

#	Article	IF	CITATIONS
19	Enhancing Singlet Oxygen Generation by Self-Assembly of a Porphyrin Entrapped in Supramolecular Fibers. Cell Reports Physical Science, 2020, 1, 100030.	5.6	11
20	Sustainable sorbitol-derived compounds for gelation of the full range of ethanol–water mixtures. Soft Matter, 2020, 16, 4640-4654.	2.7	11
21	Preferred Formation of Minority Concomitant Polymorphs in 2D Selfâ€Assembly under Lateral Nanoconfinement. Angewandte Chemie - International Edition, 2019, 58, 12964-12968.	13.8	10
22	Preferred Formation of Minority Concomitant Polymorphs in 2D Selfâ€Assembly under Lateral Nanoconfinement. Angewandte Chemie, 2019, 131, 13098-13102.	2.0	1
23	Supramolecular block copolymers incorporating chiral and achiral chromophores for the bottom-up assembly of nanomaterials. Journal of Porphyrins and Phthalocyanines, 2019, 23, 916-929.	0.8	4
24	Ground and Excited States of Bisâ€4â€Methoxybenzylâ€6ubstituted Diketopyrrolopyrroles: Spectroscopic and Electrochemical Studies. ChemPlusChem, 2019, 84, 1413-1422.	2.8	10
25	Quantification of energy of activation to supramolecular nanofibre formation reveals enthalpic and entropic effects and morphological consequence. Chemical Science, 2019, 10, 10256-10266.	7.4	12
26	Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS Omega, 2019, 4, 10108-10120.	3.5	8
27	Controlling the preferential motion of chiral molecular walkers on a surface. Chemical Science, 2019, 10, 5864-5874.	7.4	6
28	Towards more sustainable synthesis of diketopyrrolopyrroles. New Journal of Chemistry, 2019, 43, 5783-5790.	2.8	24
29	Singlet oxygen generation from porphyrin-functionalized hexahedral polysilicon microparticles. Journal of Porphyrins and Phthalocyanines, 2019, 23, 223-233.	0.8	4
30	Ultra-high resolution imaging of thin films and single strands of polythiophene using atomic force microscopy. Nature Communications, 2019, 10, 1537.	12.8	40
31	Selfâ€Assembly of Chiralâ€atâ€End Diketopyrrolopyrroles: Symmetry Dependent Solution and Film Optical Activity and Photovoltaic Performance. Chemistry - A European Journal, 2018, 24, 14461-14469.	3.3	18
32	Boosting Selfâ€Assembly Diversity in the Solidâ€State by Chiral/Nonâ€Chiral Zn ^{II} â€Porphyrin Crystallization. Chemistry - A European Journal, 2018, 24, 12950-12960.	3.3	7
33	Supramolecular materials. Chemical Society Reviews, 2017, 46, 2404-2420.	38.1	530
34	Supramolecular chemistry anniversary. Chemical Society Reviews, 2017, 46, 2376-2377.	38.1	31
35	Microscale coiling in bis-imidazolium supramolecular hydrogel fibres induced by the release of a cationic serine protease inhibitor. Chemical Communications, 2017, 53, 4509-4512.	4.1	24
36	Complex molecular surfaces and interfaces: concluding remarks. Faraday Discussions, 2017, 204, 487-502.	3.2	6

#	Article	IF	CITATIONS
37	Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks. Faraday Discussions, 2017, 204, 503-530.	3.2	0
38	Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.	3.2	2
39	Preparing macromolecular systems on surfaces: general discussion. Faraday Discussions, 2017, 204, 395-418.	3.2	0
40	Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204, 271-295.	3.2	2
41	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.3	3
42	Cationic Supramolecular Hydrogels for Overcoming the Skin Barrier in Drug Delivery. ChemistryOpen, 2017, 6, 585-598.	1.9	17
43	Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing. ACS Omega, 2017, 2, 8849-8858.	3.5	14
44	Distinguishing between Mechanical and Electrostatic Interaction in Single Pass Multi Frequency Electrostatic Force Microscopy Measurements on a Molecular Material. Langmuir, 2016, 32, 13593-13599.	3.5	7
45	Bernard L. Feringa, Nobel Prize for Chemistry 2016. Chirality, 2016, 28, 769-770.	2.6	0
46	Milliseconds Make the Difference in the Far-from-Equilibrium Self-Assembly of Supramolecular Chiral Nanostructures. Journal of the American Chemical Society, 2016, 138, 6920-6923.	13.7	57
47	Driving Forces for Covalent Assembly of Porphyrins by Selective C–H Bond Activation and Intermolecular Coupling on a Copper Surface. Journal of the American Chemical Society, 2016, 138, 5837-5847.	13.7	30
48	Tuning the electrical conductance of metalloporphyrin supramolecular wires. Scientific Reports, 2016, 6, 37352.	3.3	27
49	Functional supramolecular tetrathiafulvalene-based films with mixed valences states. Polymer, 2016, 103, 251-260.	3.8	2
50	Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. Advanced Materials, 2016, 28, 8150-8155.	21.0	22
51	Solid state supramolecular structure of diketopyrrolopyrrole chromophores: correlating stacking geometry with visible light absorption. CrystEngComm, 2016, 18, 8933-8943.	2.6	27
52	Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment. Journal of Visualized Experiments, 2016, , .	0.3	3
53	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	4.1	109
54	Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. Journal of Colloid and Interface Science, 2016, 462, 154-165.	9.4	76

#	Article	IF	CITATIONS
55	Layer-by-layer Growth. Monographs in Supramolecular Chemistry, 2016, , 303-339.	0.2	1
56	Chapter 3. Supramolecular Systems on the Surface of Water. Monographs in Supramolecular Chemistry, 2016, , 104-167.	0.2	0
57	Supramolecular Chemistry for the Formation of Dynamic Systems at Interfaces. Monographs in Supramolecular Chemistry, 2016, , 371-401.	0.2	0
58	Supramolecular Surface Systems: Which and Whither?. Monographs in Supramolecular Chemistry, 2016, , 433-485.	0.2	0
59	Chapter 7. Supramolecular Chemistry in Thin Film Formation Upon Deposition From Vapour or Solution. Monographs in Supramolecular Chemistry, 2016, , 340-370.	0.2	0
60	Patterning of Surfaces for Supramolecular Chemistry and Template Effects. Monographs in Supramolecular Chemistry, 2016, , 402-432.	0.2	1
61	A New Porphyrin for the Preparation of Functionalized Waterâ€Soluble Gold Nanoparticles with Low Intrinsic Toxicity. ChemistryOpen, 2015, 4, 127-136.	1.9	36
62	A Small Molecule Walks Along a Surface Between Porphyrin Fences That Are Assembled Inâ€Situ. Angewandte Chemie, 2015, 127, 7207-7211.	2.0	7
63	In situ template synthesis of gold nanoparticles using a bis-imidazolium amphiphile-based hydrogel. Journal of Colloid and Interface Science, 2015, 446, 53-58.	9.4	9
64	Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting "switch―through microfluidic manipulation. Chemical Science, 2015, 6, 3471-3477.	7.4	2
65	A Small Molecule Walks Along a Surface Between Porphyrin Fences That Are Assembled Inâ€Situ. Angewandte Chemie - International Edition, 2015, 54, 7101-7105.	13.8	26
66	Enzyme activity with a twist. Nature Chemistry, 2015, 7, 275-277.	13.6	9
67	Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 421-436.	4.3	24
68	Photoconductivity of Nanofilaments That are Self-Assembled from a Porphyrin with Long Alkyl-Chain Substituents. Journal of Physical Chemistry C, 2015, 119, 26154-26163.	3.1	6
69	Coordination-directed self-assembly of a simple benzothiadiazole-fused tetrathiafulvalene to low-bandgap metallogels. Chemical Communications, 2015, 51, 15063-15066.	4.1	31
70	Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds. Journal of the American Chemical Society, 2015, 137, 15795-15808.	13.7	51
71	Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. Journal of Colloid and Interface Science, 2015, 437, 132-139.	9.4	22
72	Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions. Advances in Atom and Single Molecule Machines, 2015, , 127-141.	0.0	0

#	Article	IF	CITATIONS
73	Tip-Induced Chemical Manipulation of Metal Porphyrins at a Liquid/Solid Interface. Journal of the American Chemical Society, 2014, 136, 17418-17421.	13.7	34
74	Localized Crystallization of Enantiomeric Organic Compounds on Chiral Microâ€patterns from Various Organic Solutions. Chemistry - A European Journal, 2014, 20, 10466-10474.	3.3	3
75	Nucleation & amp; crystallisation. Chemical Society Reviews, 2014, 43, 2009.	38.1	5
76	Water-soluble gold nanoparticles based on imidazolium gemini amphiphiles incorporating piroxicam. RSC Advances, 2014, 4, 9279.	3.6	20
77	Hierarchical Selfâ€Assembly of Supramolecular Helical Fibres from Amphiphilic <i>C</i> ₃ â€Symmetrical Functional Tris(tetrathiafulvalenes). Chemistry - A European Journal, 2014, 20, 17443-17453.	3.3	35
78	Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. Chemical Communications, 2014, 50, 13216-13219.	4.1	8
79	Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chemical Communications, 2014, 50, 82-84.	4.1	20
80	Crystal structure analyses facilitate understanding of synthesis protocols in the preparation of 6,6′-dibromo-substituted BINOL compounds. CrystEngComm, 2014, 16, 10131-10138.	2.6	6
81	Supramolecular gels based on a gemini imidazolium amphiphile as molecular material for drug delivery. Journal of Materials Chemistry B, 2014, 2, 5419.	5.8	52
82	Versatile Bottom-Up Construction of Diverse Macromolecules on a Surface Observed by Scanning Tunneling Microscopy. ACS Nano, 2014, 8, 8856-8870.	14.6	65
83	Localized, Stepwise Template Growth of Functional Nanowires from an Amino Acid-Supported Framework in a Microfluidic Chip. ACS Nano, 2014, 8, 818-826.	14.6	21
84	Highly Conductive Single-Molecule Wires with Controlled Orientation by Coordination of Metalloporphyrins. Nano Letters, 2014, 14, 4751-4756.	9.1	48
85	Molecular recognition of aliphatic amines by luminescent Zn-porphyrins. Inorganica Chimica Acta, 2014, 417, 222-229.	2.4	6
86	†Sergeants-and-Corporals' principle in chiral induction at an interface. Chemical Communications, 2013, 49, 7477.	4.1	40
87	Homochiral and heterochiral assembly preferences at different length scales – conglomerates and racemates in the same assemblies. Chemical Communications, 2013, 49, 9320.	4.1	32
88	Highly charged. Nature Chemistry, 2013, 5, 365-366.	13.6	9
89	Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chemistry, 2013, 5, 621-627.	13.6	107
90	Biomolecules at Interfaces: Chiral, Naturally. Topics in Current Chemistry, 2013, 333, 109-156.	4.0	24

#	Article	lF	CITATIONS
91	CHAPTER 7. Optic and Electronic Applications of Molecular Gels. RSC Soft Matter, 2013, , 195-254.	0.4	1
92	Journées André Collet de la Chiralité (JACC 2012). Chirality, 2013, 25, 435-435.	2.6	0
93	Pasteurian Segregation on a Surface Imaged In Situ at the Molecular Level. Angewandte Chemie - International Edition, 2012, 51, 11981-11985.	13.8	26
94	Gemini Imidazolium Amphiphiles for the Synthesis, Stabilization, and Drug Delivery from Gold Nanoparticles. Langmuir, 2012, 28, 2368-2381.	3.5	79
95	A Chiral Selfâ€Assembled Monolayer Derived from a Resolving Agent and its Performance as a Crystallization Template for an Organic Compound from Organic Solvents. Chemistry - A European Journal, 2012, 18, 15984-15993.	3.3	7
96	Vapour printing: patterning of the optical and electrical properties of organic semiconductors in one simple step. Journal of Materials Chemistry, 2012, 22, 4519.	6.7	16
97	Sensitive detection of enantiomeric excess in different acids through chiral induction in an oligo(p-phenylenevinylene) aggregate. Organic and Biomolecular Chemistry, 2012, 10, 9152.	2.8	17
98	Novel double-decker phthalocyaninato terbium(iii) single molecule magnets with stabilised redox states. Dalton Transactions, 2012, 41, 13632.	3.3	51
99	Multiply biphenyl substituted zinc(II) porphyrin and phthalocyanine as components for molecular materials. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1293-1302.	0.8	11
100	Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material. Chemical Communications, 2012, 48, 4552.	4.1	57
101	Electronic and vibrational circular dichroism spectroscopies for the understanding of chiral organization in porphyrin aggregates. Chemical Communications, 2012, 48, 9147.	4.1	16
102	Organization of the enantiomeric and racemic forms of an amphiphilic resorcinol derivative at the air–water and graphite–1â€phenyloctane interfaces. Chirality, 2012, 24, 155-166.	2.6	11
103	Chiral non-periodic surface-confined molecular nanopatterns revealed by scanning tunnelling microscopy. CrystEngComm, 2011, 13, 5578.	2.6	6
104	Nanocomposites combining conducting and superparamagnetic components prepared via an organogel. Soft Matter, 2011, 7, 2755.	2.7	12
105	Self-assembly of supramolecular wires and cross-junctions and efficient electron tunnelling across them. Chemical Science, 2011, 2, 1945.	7.4	20
106	Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic <i>C</i> ₃ -Symmetrical ̀-Functional Molecule. Journal of the American Chemical Society, 2011, 133, 8344-8353.	13.7	154
107	Clean Coupling of Unfunctionalized Porphyrins at Surfaces To Give Highly Oriented Organometallic Oligomers. Journal of the American Chemical Society, 2011, 133, 12031-12039.	13.7	133
108	Surface Supramolecular Organization of a Terbium(III) Double-Decker Complex on Graphite and its Single Molecule Magnet Behavior. Journal of the American Chemical Society, 2011, 133, 6603-6612.	13.7	189

#	Article	IF	CITATIONS
109	Varied nanostructures from a single multifunctional molecular material. Journal of Materials Chemistry, 2011, 21, 1428-1437.	6.7	26
110	Boosting electrical conductivity in a gel-derived material by nanostructuring with trace carbon nanotubes. Nanoscale, 2011, 3, 2898.	5.6	22
111	Controlled crystallization of organic molecules on micro-patterned surfaces. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C819-C819.	0.3	0
112	Spontaneous Deracemization. Israel Journal of Chemistry, 2011, 51, 1034-1040.	2.3	49
113	The Beauty of Knots at the Molecular Level. Topics in Current Chemistry, 2011, 323, 107-125.	4.0	28
114	Selfâ€Assembly of Chiral <i>trans</i> â€Cyclobutaneâ€Containing βâ€Dipeptides into Ordered Aggregates. Chemistry - A European Journal, 2011, 17, 4588-4597.	3.3	47
115	Central metal ion determined self-assembly of intrinsically chiral porphyrins. Journal of Porphyrins and Phthalocyanines, 2011, 15, 995-1003.	0.8	14
116	A Liquidâ€Crystalline Singleâ€Molecule Magnet with Variable Magnetic Properties. Angewandte Chemie - International Edition, 2010, 49, 1623-1626.	13.8	142
117	X-ray absorption and magnetic circular dichroism investigation of bis(phthalocyaninato)terbium single-molecule magnets deposited on graphite. Physical Review B, 2010, 82, .	3.2	31
118	Solvent effect on the morphology and function of novel gel-derived molecular materials. Journal of Materials Chemistry, 2010, 20, 466-474.	6.7	63
119	A Racemic Conglomerate Nipped in the Bud: A Molecular View of Enantiomer Cross-Inhibition of Conglomerate Nucleation at a Surface. Crystal Growth and Design, 2010, 10, 4516-4525.	3.0	15
120	Tuning the Supramolecular Chirality of One- and Two-Dimensional Aggregates with the Number of Stereogenic Centers in the Component Porphyrins. Journal of the American Chemical Society, 2010, 132, 9350-9362.	13.7	98
121	Probing the Magnetic Properties of Three Interconvertible Redox States of a Single-Molecule Magnet with Magnetic Circular Dichroism Spectroscopy. Journal of the American Chemical Society, 2010, 132, 1756-1757.	13.7	110
122	Use of unnatural β-peptides as a self-assembling component in functional organic fibres. Organic and Biomolecular Chemistry, 2010, 8, 1661.	2.8	29
123	Gels as a soft matter route to conducting nanostructured organic and composite materials. Soft Matter, 2010, 6, 1605.	2.7	68
124	Tuning the local frictional and electrostatic responses of nanostructured SrTiO3—surfaces by self-assembled molecular monolayers. Physical Chemistry Chemical Physics, 2010, 12, 4452.	2.8	22
125	Layerâ€Byâ€Layer Electropeeling of Organic Conducting Material Imaged In Real Time. Small, 2009, 5, 214-220.	10.0	8
126	How Deformation Can Lend a Hand to Molecular Ordering. Science, 2009, 325, 402-403.	12.6	9

#	Article	IF	CITATIONS
127	Rich Phase Behavior in a Supramolecular Conducting Material Derived from an Organogelator. Advanced Functional Materials, 2009, 19, 934-941.	14.9	36
128	Supramolecular electroactive organogel and conducting nanofibers with C3-symmetrical architectures. Journal of Materials Chemistry, 2009, 19, 4495.	6.7	56
129	Topology in molecules inspired, seen and represented. Chemical Society Reviews, 2009, 38, 1562.	38.1	63
130	Amino Acid Based Metalâ^'Organic Nanofibers. Journal of the American Chemical Society, 2009, 131, 18222-18223.	13.7	122
131	Surface aggregate morphology of chiral porphyrins as a function of constitution and amphiphilic nature. New Journal of Chemistry, 2009, 33, 358-365.	2.8	28
132	Chiral nanoscale systems: preparation, structure, properties and function. Chemical Society Reviews, 2009, 38, 669.	38.1	39
133	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	13.8	82
134	Self-assembly of a chiral porphyrin at surfaces. Superlattices and Microstructures, 2008, 44, 556-562.	3.1	12
135	Polymorphic and hydrate supramolecular solid state structures of a uracil derived nitronyl nitroxide. Inorganica Chimica Acta, 2008, 361, 4094-4099.	2.4	5
136	Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chemical Communications, 2008, , 1536.	4.1	200
137	TTF-based bent-core liquid crystals. Chemical Communications, 2008, , 2523.	4.1	22
138	Bottom-up assembly of high density molecular nanowire cross junctions at a solid/liquid interface. Chemical Communications, 2008, , 703-705.	4.1	34
139	Assembly of functional molecular nanostructures on surfaces. Chemical Society Reviews, 2008, 37, 490-504.	38.1	135
140	Intrinsic avalanches and collective phenomena in a Mn(II)-free radical ferrimagnetic chain. Physical Review B, 2008, 77, .	3.2	10
141	Chiral Expression at the Solidâ^'Liquid Interface: A Joint Experimental and Theoretical Study of the Self-Assembly of Chiral Porphyrins on Graphite. Langmuir, 2008, 24, 9566-9574.	3.5	42
142	Monolayer self-assembly at liquid–solid interfaces: chirality and electronic properties of molecules at surfaces. Journal of Physics Condensed Matter, 2008, 20, 184003.	1.8	17
143	Influence of SiO2 surface energy on the performance of organic field effect transistors based on highly oriented, zone-cast layers of a tetrathiafulvalene derivative. Journal of Applied Physics, 2008, 104, 054509.	2.5	45
144	Bent-core liquid-crystalline derivative of tetrathiafulvalene: Photoresponsivity and deracemization. Physical Review E, 2008, 77, 020701.	2.1	7

#	Article	IF	CITATIONS
145	Synthesis and Doping of a Multifunctional Tetrathiafulvalene- Substituted Poly(isocyanide). Macromolecules, 2007, 40, 7521-7531.	4.8	54
146	Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chemical Society Reviews, 2007, 36, 941-967.	38.1	414
147	Supramolecular Conducting Nanowires from Organogels. Angewandte Chemie - International Edition, 2007, 46, 238-241.	13.8	243
148	Nanofibre whirlpools. Nature Materials, 2007, 6, 924-925.	27.5	26
149	Subtle competition between ferromagnetic and antiferromagnetic order in a Mn(II)-free radical ferrimagnetic chain. Physical Review B, 2007, 75, .	3.2	12
150	Supramolecular Chiral Functional Materials. Topics in Current Chemistry, 2006, , 253-302.	4.0	82
151	Noncovalent Control for Bottom-Up Assembly of Functional Supramolecular Wires. Journal of the American Chemical Society, 2006, 128, 12602-12603.	13.7	81
152	Efficient High Area OFETs by Solution Based Processing of a π-Electron Rich Donor. Chemistry of Materials, 2006, 18, 4724-4729.	6.7	80
153	Long-range effects of chirality in aromatic poly(isocyanide)s. Journal of Polymer Science Part A, 2006, 44, 3161-3174.	2.3	51
154	Synthesis of optically active amphiphilic tetrathiafulvalene derivatives. Tetrahedron, 2006, 62, 3370-3379.	1.9	16
155	Polymorphs of a pyrazole nitronyl nitroxide and its complexes with metal(ii) hexafluoroacetylacetonates. Journal of Materials Chemistry, 2006, 16, 2736.	6.7	20
156	Chemical and Constitutional Influences in the Self-Assembly of Functional Supramolecular Hydrogen-Bonded Nanoscopic Fibres. Chemistry - A European Journal, 2006, 12, 9161-9175.	3.3	46
157	Chiral teleinduction in the polymerization of isocyanides. Polymer, 2005, 46, 1507-1521.	3.8	26
158	Enantiopure and Racemic Chiral Nitronyl Nitroxide Free Radicals: Synthesis and Characterization. European Journal of Organic Chemistry, 2005, 2005, 348-359.	2.4	23
159	Chiral Teleinduction in the Formation of a Macromolecular Multistate Chiroptical Redox Switch. Advanced Materials, 2005, 17, 2095-2098.	21.0	87
160	Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. Chemical Communications, 2005, , 1255-1257.	4.1	111
161	Self-assembly of tetrathiafulvalene derivatives at a liquid/solid interface—compositional and constitutional influence on supramolecular ordering. Journal of Materials Chemistry, 2005, 15, 4601.	6.7	63
162	Reversible and irreversible conformational changes in poly(isocyanide)s: a remote stereoelectronic effect. Chemical Communications, 2005, , 322.	4.1	10

#	Article	IF	CITATIONS
163	Chemical Topology. , 2004, , 229-235.		1
164	Chiral Induction. , 2004, , 245-252.		2
165	Taking chiral induction into the nanometre regime: chiral teleinduction in the synthesis of poly(isocyanide)s. Mendeleev Communications, 2004, 14, 256-257.	1.6	3
166	A Nanoscale View of Supramolecular Stereochemistry in Self-Assembled Monolayers of Enantiomers and Racemates. Langmuir, 2004, 20, 9628-9635.	3.5	41
167	Self-Assembled Monolayers of Tetrathiafulvalene Derivatives on Au(111):Â Organization and Electrical Propertiesâ€. Journal of Physical Chemistry B, 2004, 108, 7213-7218.	2.6	43
168	Pressure Effect on the 3-D Magnetic Ordering of a Quasi-1-D Enantiopure Molecular Magnet. Journal of Physical Chemistry B, 2004, 108, 18441-18445.	2.6	17
169	Magnetism of isolatedMn12single-molecule magnets detected by magnetic circular dichroism: Observation of spin tunneling with a magneto-optical technique. Physical Review B, 2004, 69, .	3.2	36
170	Chiral, single-molecule nanomagnets: synthesis, magnetic characterization and natural and magnetic circular dichroism. Journal of Materials Chemistry, 2004, 14, 2455-2460.	6.7	48
171	Stereochemistry and EPR investigation of a chiral molecular magnet. Journal of Physics and Chemistry of Solids, 2004, 65, 723-726.	4.0	6
172	Synthesis and Characterization of a [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4] Complex Bearing Paramagnetic Carboxylate Ligands. Use of a Modified Acid Replacement Synthetic Approach. Monatshefte Für Chemie, 2003, 134, 265-276.	1.8	20
173	Spontaneous Resolution under Supramolecular Control. ChemInform, 2003, 34, no.	0.0	0
174	Synthesis of Novel Dendrimers Containing Pyrimidine Units ChemInform, 2003, 34, no.	0.0	0
175	Synthesis of novel dendrimers containing pyrimidine units. Tetrahedron, 2003, 59, 3937-3943.	1.9	25
176	From purely organic to metallo-organic chiral magnetic materials. Polyhedron, 2003, 22, 2349-2354.	2.2	23
177	Synthesis and characterization of a new chiral nanomagnet. Polyhedron, 2003, 22, 2355-2358.	2.2	18
178	Synthesis, separation, and isomer-dependent packing in two dimensions—detected by scanning tunnelling microscopy—of a TTF derivative. Chemical Communications, 2003, , 906-907.	4.1	22
179	Adlayers and Low-Dimensional Assemblies of a TTF Derivative at a Liquidâ^'Solid Interface. Nano Letters, 2003, 3, 1375-1378.	9.1	28
180	New Accelerated Strategy for the Synthesis of Poly(Ether Ketone) Dendrons. Journal of Organic Chemistry, 2002, 67, 1004-1007.	3.2	11

#	Article	IF	CITATIONS
181	Characterisation of nanoscopic [Mn12O12(O2CR)16(H2O)4] single-molecule magnets: physicochemical properties and LDI- and MALDI-TOF mass spectrometryLDI- and MALDI-TOF are acronyms for Laser Desorption/Ionisation and Matrix Assisted Laser Desorption/Ionisation Time-of-Flight Journal of Materials Chemistry, 2002, 12, 1152-1161.	6.7	44
182	Spontaneous resolution under supramolecular control. Chemical Society Reviews, 2002, 31, 342-356.	38.1	517
183	Recemic and enantiomerically pure phenyl i±-nitronyl nitroxide radicals: influence of chirality on solution and solid state propertiesElectronic supplementary information (ESI) available: figures showing alternative views of the crystal structures and the shortest distances between SOMOs in the crystals. See http://www.rsc.org/suppdata/jm/b1/b106239p/. Journal of Materials Chemistry, 2002, 12,	6.7	20
184	Spontaneous resolution and absolute configuration of a coordination polymer formed by MnII and a ferrocene-based bisnitronyl nitroxide radicalElectronic supplementary information available: Experimental procedure. See http://www.rsc.org/suppdata/cc/b2/b205722k/. Chemical Communications, 2002, , 2342-2343.	4.1	36
185	An Enantiopure Molecular Ferromagnet. Angewandte Chemie - International Edition, 2002, 41, 586-589.	13.8	163
186	Synthesis and Characterization of a [Mn12 O12(O2CR)16(H2O)4] Complex Bearing Paramagnetic Carboxylate Ligands. Use of a Modified Acid Replacement Synthetic Approach. , 2002, , 149-160.		1
187	Chiroptical properties and magnetism of chiral and achiral phenyl α-nitronyl nitroxides in the solid state. Synthetic Metals, 2001, 121, 1798-1799.	3.9	0
188	Circular dichroism studies of crystalline chiral and achiral α-nitronyl nitroxide †radicals in a KBr matrix. Perkin Transactions II RSC, 2001, , 670-676.	1.1	41
189	A Phenyl α-Nitronyl Nitroxide with a Forced Chiral Conformation. Monatshefte Für Chemie, 2001, 132, 71-82.	1.8	2
190	Pyrazol-4-yl-substituted α-nitronyl and α-imino nitroxide radicals in solution and solid states. Polyhedron, 2001, 20, 1563-1569.	2.2	22
191	Solution state circular dichroism studies of chiral phenyl α-nitronyl nitroxide radicals. Polyhedron, 2001, 20, 1633-1641.	2.2	2
192	Characterization of the vulcanization products of squalene by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: model studies on the vulcanization of natural rubber. Journal of Mass Spectrometry, 2001, 36, 294-300.	1.6	13
193	Intramolecular fluorescence quenching in porphyrin-bearing [2]catenates. Journal of Porphyrins and Phthalocyanines, 2001, 05, 633-644.	0.8	9
194	Chirality of α-Nitronyl Nitroxide Radicals in the Solid State. Journal of Solid State Chemistry, 2001, 159, 440-450.	2.9	15
195	Homo- and Heterochiral Supramolecular Tapes from Achiral, Enantiopure, and Racemic Promesogenic Formamides: Expression of Molecular Chirality in Two and Three Dimensions. Angewandte Chemie - International Edition, 2001, 40, 3217-3220.	13.8	91
196	A Phenyl Î \pm -Nitronyl Nitroxide with a Forced Chiral Conformation. , 2001, , 71-82.		2
197	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of some conducting polymers. , 2000, 35, 550-555.		19
198	Stereochemistry of Phenylα-Nitronyl Nitroxide Radicals. Chemistry - A European Journal, 2000, 6, 2350-2361.	3.3	34

#	Article	IF	CITATIONS
199	Stereochemistry of Phenyl -Nitronyl Nitroxide Radicals. Chemistry - A European Journal, 2000, 6, 2350-2361.	3.3	2
200	Template-Directed Synthesis of a Rotacatenane. European Journal of Organic Chemistry, 1999, 1999, 1295-1302.	2.4	34
201	Chiral linear isocyanide palladium(ii) and gold(i) complexes as ferroelectric liquid crystals. Journal of Materials Chemistry, 1999, 9, 2301-2305.	6.7	18
202	A Chiral Hydrogen-Bonded α-Phenyl Nitronyl Nitroxide in the Solution and Solid States. Molecular Crystals and Liquid Crystals, 1999, 334, 347-358.	0.3	12
203	A Uracil-Substituted α-Nitronyl Nitroxide. Molecular Crystals and Liquid Crystals, 1999, 334, 333-345.	0.3	20
204	Crystal engineering and magnetism of hydrogen-bonded phenyl nitronyl nitroxides. Synthetic Metals, 1999, 103, 2253-2256.	3.9	16
205	Crystal architectures of organic molecular-based magnets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 2873-2891.	3.4	14
206	Template-Directed Synthesis of a Rotacatenane. , 1999, 1999, 1295.		1
207	Kinetic Control of "Unnatural―Chiral Induction in Poly(isocyanide)s. Advanced Materials, 1998, 10, 1001-1005.	21.0	28
208	Kinetic and Thermodynamic Effects in the Self-Assembly of [3]Catenanes in the Solution and Solid States. Chemistry - A European Journal, 1998, 4, 460-468.	3.3	35
209	Aggregation of self-assembling branched [n]rotaxanes. New Journal of Chemistry, 1998, 22, 959-972.	2.8	62
210	Copper(I)-templated synthesis of [2]catenates bearing pendant porphyrins. New Journal of Chemistry, 1998, 22, 395-409.	2.8	40
211	Oligocatenanes Made to Order1. Journal of the American Chemical Society, 1998, 120, 4295-4307.	13.7	157
212	Long-Range Chiral Induction in Chemical Systems with Helical Organization. Promesogenic Monomers in the Formation of Poly(isocyanide)s and in the Organization of Liquid Crystals. Journal of the American Chemical Society, 1998, 120, 9126-9134.	13.7	105
213	Kinetic and Thermodynamic Effects in the Self-Assembly of [3]Catenanes in the Solution and Solid States. Chemistry - A European Journal, 1998, 4, 460-468.	3.3	0
214	Translational Isomerism in Some Two- and Three-Station [2]Rotaxanesâ€. Journal of Organic Chemistry, 1997, 62, 3062-3075.	3.2	33
215	The Five-Stage Self-Assembly of a Branched Heptacatenane. Angewandte Chemie International Edition in English, 1997, 36, 2070-2072.	4.4	113
216	Selbstorganisation eines verzweigten Heptacatenans in fünf Stufen. Angewandte Chemie, 1997, 109, 2160-2162.	2.0	32

#	Article	lF	CITATIONS
217	Self-Assembly of [n]Rotaxanes Bearing Dendritic Stoppers⊥. Journal of the American Chemical Society, 1996, 118, 12012-12020.	13.7	128
218	A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donorâ^ Acceptor Interactions. Journal of the American Chemical Society, 1996, 118, 3905-3913.	13.7	112
219	Rings-and-String Approach to the Construction of Porphyrin Arrays by Transition-Metal-Directed Threading. Journal of the American Chemical Society, 1996, 118, 3285-3286.	13.7	45
220	A transition metal ion assembled catenane bearing linearly-arranged donor and acceptor porphyrins. Chemical Communications, 1996, , 2441.	4.1	20
221	Switchable Interlocked Molecules, Threaded Complexes and Interlocking in Crystals. , 1996, , 65-83.		2
222	Kinetische Selektion bei der templatgesteuerten Selbstorganisation von [2]Catenanen. Angewandte Chemie, 1995, 107, 2569-2572.	2.0	13
223	Kinetic Selection in the Template-Directed Self-Assembly of[2]Catenanes. Angewandte Chemie International Edition in English, 1995, 34, 2378-2380.	4.4	42
224	Macrocyclic polyethers incorporating resorcinol residues as templates for cyclobis(paraquat-p-phenylene) in the self-assembly of [2]catenanes. Supramolecular Chemistry, 1995, 5, 5-8.	1.2	13
225	Molecular Meccano. 2. Self-Assembly of [n]Catenanes. Journal of the American Chemical Society, 1995, 117, 1271-1293.	13.7	278
226	Interlocked and Intertwined Structures and Superstructures. Chemical Reviews, 1995, 95, 2725-2828.	47.7	1,579
227	The controlled self-assembly of a [3]rotaxane incorporating three constitutionally different components. Journal of the Chemical Society Chemical Communications, 1995, , 747-750.	2.0	44
228	The self-assembly of branched [n]rotaxanes—the first step towards dendritic rotaxanes. Journal of the Chemical Society Chemical Communications, 1995, , 751-753.	2.0	64
229	Molecular Recognition by Catenated Structures. , 1995, , 33-40.		1
230	The Two-Step Self-Assembly of[4]- and[5]Catenanes. Angewandte Chemie International Edition in English, 1994, 33, 433-437.	4.4	91
231	Olympiadane. Angewandte Chemie International Edition in English, 1994, 33, 1286-1290.	4.4	203
232	Zweistufige Selbstassoziation von [4]―und [5]Catenanen. Angewandte Chemie, 1994, 106, 450-453.	2.0	31
233	Olympiadan. Angewandte Chemie, 1994, 106, 1316-1319.	2.0	57
234	From Solid-State Structures and Superstructures to Self-Assembly Processes. Chemistry of Materials, 1994, 6, 1159-1167.	6.7	77

#	Article	IF	CITATIONS
235	The solid-state self-organisation of a self-assembled [2]catenane. Journal of the Chemical Society Chemical Communications, 1994, , 2475.	2.0	22
236	Self-assembled [2]catenanes exhibiting highly selective translational isomerism. Journal of the Chemical Society Chemical Communications, 1994, , 2479.	2.0	13
237	Towards the selfâ€assembly of polyrotaxanes. Macromolecular Symposia, 1994, 77, 191-207.	0.7	17
238	Isomeric Self-Assembling [2]Catenanes. Angewandte Chemie International Edition in English, 1993, 32, 1297-1301.	4.4	59
239	A new approach to controlling catenated structures. Recueil Des Travaux Chimiques Des Pays-Bas, 1993, 112, 429-430.	0.0	12
240	Self-assembly and macromolecular design. Pure and Applied Chemistry, 1993, 65, 2351-2359.	1.9	63
241	Chemical Synthesis of Nanostructures. Materials Research Society Symposia Proceedings, 1993, 330, 57.	0.1	1