Jeremy I Feldblyum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/798232/publications.pdf Version: 2024-02-01

		687363	839539
19	1,325 citations	13	18
papers	citations	h-index	g-index
21	21	21	2765
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Concentrated mixed cation acetate "water-in-salt―solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy and Environmental Science, 2018, 11, 2876-2883.	30.8	315
2	Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chemical Communications, 2015, 51, 13894-13897.	4.1	201
3	Reconciling the Discrepancies between Crystallographic Porosity and Guest Access As Exemplified by Zn-HKUST-1. Journal of the American Chemical Society, 2011, 133, 18257-18263.	13.7	195
4	H-Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2015, 137, 4328-4331.	13.7	111
5	Analysis of the operation of thin nanowire photoelectrodes for solar energy conversion. Energy and Environmental Science, 2012, 5, 5203-5220.	30.8	100
6	Polymer@MOF@MOF: "grafting from―atom transfer radical polymerization for the synthesis of hybrid porous solids. Chemical Communications, 2015, 51, 11994-11996.	4.1	100
7	Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chemical Communications, 2012, 48, 9828.	4.1	49
8	Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal–Organic Frameworks in Aqueous Electrolytes. ACS Nano, 2020, 14, 15919-15925.	14.6	46
9	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	3.5	39
10	Interpenetration, Porosity, and High-Pressure Gas Adsorption in Zn ₄ O(2,6-naphthalene) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
11	Positronium emission spectra from self-assembled metal-organic frameworks. Physical Review B, 2014, 89, .	3.2	34
12	Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 3112-3121.	3.1	32
13	Evidence of Positronium Bloch States in Porous Crystals ofZn4O-Coordination Polymers. Physical Review Letters, 2013, 110, 197403.	7.8	23
14	Structural Analysis of Soft Multicomponent Nanoparticle Clusters. ACS Nano, 2010, 4, 6982-6988.	14.6	14
15	Framework Isomerism in a Series of btb-Containing In-Derived Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 3124-3129.	3.0	12

16	A mini DNA–RNA hybrid origami nanobrick. Nanoscale Advances, 2021, 3, 4048-4051.	4.6	10
17	Ferrocene metallopolymers of intrinsic microporosity (MPIMs). Chemical Communications, 2021, 58, 238-241.	4.1	4

18Factors Governing the Chemical Stability of Shear-Exfoliated ZnSe(alkylamine) IIâ€"VI Layered Hybrids.
Chemistry of Materials, 2020, 32, 2379-2388.6.73

#	Article	IF	CITATIONS
19	Probing the Edges between Stability and Degradation of a Series of ZnSeâ€Based Layered Hybrid Semiconductors. Advanced Materials Interfaces, 0, , 2200347.	3.7	1