Lanfranco Fattorini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981850/publications.pdf

Version: 2024-02-01

105 papers 4,274 citations

35 h-index 61 g-index

106 all docs

106
docs citations

106 times ranked 5110 citing authors

#	Article	IF	CITATIONS
1	Towards tuberculosis elimination: an action framework for low-incidence countries. European Respiratory Journal, 2015, 45, 928-952.	6.7	608
2	Infection of Human Macrophages and Dendritic Cells with <i>Mycobacterium tuberculosis</i> li>Induces a Differential Cytokine Gene Expression That Modulates T Cell Response. Journal of Immunology, 2001, 166, 7033-7041.	0.8	378
3	Clinical and operational value of the extensively drug-resistant tuberculosis definition. European Respiratory Journal, 2007, 30, 623-626.	6.7	179
4	<i>Mycobacterium tuberculosis</i> Strains with Highly Discordant Rifampin Susceptibility Test Results. Journal of Clinical Microbiology, 2009, 47, 3501-3506.	3.9	167
5	Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. European Respiratory Journal, 2008, 31, 1155-1159.	6.7	131
6	Whole Genome Sequencing Reveals Complex Evolution Patterns of Multidrug-Resistant Mycobacterium tuberculosis Beijing Strains in Patients. PLoS ONE, 2013, 8, e82551.	2. 5	117
7	Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum ?-lactamase genes cloned from a natural isolate and a high-level ?-lactamase producer. Molecular Microbiology, 1994, 12, 491-504.	2.5	104
8	Rifampin Induces Hydroxyl Radical Formation in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 7527-7533.	3.2	91
9	The Extra Cytoplasmic Function Sigma Factor $let{l}f$ E Is Essential for Mycobacterium tuberculosis Virulence in Mice. Infection and Immunity, 2004, 72, 3038-3041.	2.2	90
10	Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. European Journal of Immunology, 2002, 32, 3050-3058.	2.9	79
11	Fluoroquinolones: are they essential to treat multidrug-resistant tuberculosis?. European Respiratory Journal, 2008, 31, 904-905.	6.7	67
12	The <i>Mycobacterium tuberculosis</i> Sigma Factor if ^B Is Required for Full Response to Cell Envelope Stress and Hypoxia In Vitro, but It Is Dispensable for In Vivo Growth. Journal of Bacteriology, 2009, 191, 5628-5633.	2.2	66
13	An Anti-Inflammatory Role for Vα14 NK T cells in <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin-Infected Mice. Journal of Immunology, 2003, 171, 1961-1968.	0.8	61
14	Activities of Drug Combinations against Mycobacterium tuberculosis Grown in Aerobic and Hypoxic Acidic Conditions. Antimicrobial Agents and Chemotherapy, 2013, 57, 1428-1433.	3.2	61
15	Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. Journal of Antibiotics, 2015, 68, 711-714.	2.0	61
16	Prevention of False Resistance Results Obtained in Testing the Susceptibility of Mycobacterium tuberculosis to Pyrazinamide with the Bactec MGIT 960 System Using a Reduced Inoculum. Journal of Clinical Microbiology, 2013, 51, 291-294.	3.9	58
17	In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides, 2004, 25, 1075-1077.	2.4	56
18	Mycobacterium tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation. Journal of Microbiology, 2016, 54, 565-572.	2.8	55

#	Article	IF	Citations
19	Bacterial coinfections in COVID-19: an underestimated adversary. Annali Dell'Istituto Superiore Di Sanita, 2020, 56, 359-364.	0.4	55
20	Activities of Moxifloxacin Alone and in Combination with Other Antimicrobial Agents against Multidrug-Resistant Mycobacterium tuberculosis Infection in BALB/c Mice. Antimicrobial Agents and Chemotherapy, 2003, 47, 360-362.	3.2	51
21	Mycobacterium bovis Bacillus Calmette-Guerin infects DC-SIGN- dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. Journal of Leukocyte Biology, 2005, 78, 106-113.	3.3	51
22	Evaluation of a New Line Probe Assay for Rapid Identification of gyrA Mutations in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 2928-2933.	3.2	49
23	Mycobacterium tuberculosis Diverts Alpha Interferon-Induced Monocyte Differentiation from Dendritic Cells into Immunoprivileged Macrophage-Like Host Cells. Infection and Immunity, 2004, 72, 4385-4392.	2.2	48
24	Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomedicine and Pharmacotherapy, 2018, 105, 1353-1359.	5.6	48
25	Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis, 2018, 109, 17-27.	1.9	47
26	Drug-Resistant Tuberculosis 2020: Where We Stand. Applied Sciences (Switzerland), 2020, 10, 2153.	2.5	46
27	Drug Resistance Evolution of a Mycobacterium tuberculosis Strain from a Noncompliant Patient. Journal of Clinical Microbiology, 2005, 43, 3114-3120.	3.9	45
28	Induction of IL-1Â, IL-6, TNF-Â, GM-CSF and G-CSF in human macrophages by smooth transparent and smooth opaque colonial variants of Mycobacterium avium. Journal of Medical Microbiology, 1994, 40, 129-133.	1.8	44
29	Use of the chromosomal class A beta-lactamase of Mycobacterium fortuitum D316 to study potentially poor substrates and inhibitory beta-lactam compounds. Antimicrobial Agents and Chemotherapy, 1994, 38, 1608-1614.	3.2	44
30	Inhibition of HIVâ€1 Replication in Monocyteâ€Derived Macrophages byMycobacterium tuberculosis. Journal of Infectious Diseases, 2004, 189, 624-633.	4.0	39
31	IFN- \hat{l}^2 improves BCG immunogenicity by acting on DC maturation. Journal of Leukocyte Biology, 2009, 85, 462-468.	3.3	39
32	A Pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. Journal of Microbiological Methods, 2005, 62, 113-120.	1.6	38
33	The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1immune response in mice. Cellular Microbiology, 2007, 9, 1455-1465.	2.1	38
34	Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis, 2009, 89, 317-324.	1.9	38
35	TARGETING DORMANT BACILLI TO FIGHT TUBERCULOSIS. Mediterranean Journal of Hematology and Infectious Diseases, 2013, 5, e2013072.	1.3	38
36	GenoType MTBDR <i>sl</i> performance on clinical samples with diverse genetic background. European Respiratory Journal, 2012, 40, 690-698.	6.7	37

#	Article	IF	Citations
37	Extensively Drug-Resistant Tuberculosis Is Worse than Multidrug-Resistant Tuberculosis: Different Methodology and Settings, Same Results. Clinical Infectious Diseases, 2008, 46, 958-959.	5.8	35
38	In vitro and ex vivo activities of antimicrobial agents used in combination with clarithromycin, with or without amikacin, against Mycobacterium avium. Antimicrobial Agents and Chemotherapy, 1995, 39, 680-685.	3.2	34
39	Activity of Drug Combinations against Dormant <i>Mycobacterium tuberculosis</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 2712-2715.	3.2	34
40	Characterization of a $\langle i \rangle \hat{l}^2 \langle i \rangle$ -lactamase produced in $\langle i \rangle$ Mycobacterium fortuitum $\langle i \rangle$ D316. Biochemical Journal, 1990, 271, 729-734.	3.7	33
41	Activity of 16 Antimicrobial Agents Against Drug-Resistant Strains of (i) Mycobacterium tuberculosis (i). Microbial Drug Resistance, 1999, 5, 265-270.	2.0	33
42	Cetyl-Pyridinium Chloride Is Useful for Isolation of Mycobacterium tuberculosis from Sputa Subjected to Long-Term Storage. Journal of Clinical Microbiology, 2005, 43, 442-444.	3.9	33
43	Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice. Microbiology (United Kingdom), 2002, 148, 3873-3880.	1.8	32
44	Infection of human THP-1 cells with dormant Mycobacterium tuberculosis. Microbes and Infection, 2012, 14, 959-967.	1.9	31
45	The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against Mycobacterium tuberculosis infection by dampening IFN-γ response. Vaccine, 2008, 26, 4237-4243.	3.8	29
46	Fighting tuberculosis by drugs targeting nonreplicating <i>Mycobacterium tuberculosis</i> bacilli. International Journal of Mycobacteriology, 2017, 6, 213.	0.6	29
47	Bacillus Calmette-Gu�rin shares with virulent the capacity to subvert monocyte differentiation into dendritic cell: implication for its efficacy as a vaccine preventing tuberculosis. Vaccine, 2004, 22, 3848-3857.	3.8	28
48	Evaluation of Molecular-Beacon, TaqMan, and Fluorescence Resonance Energy Transfer Probes for Detection of Antibiotic Resistance-Conferring Single Nucleotide Polymorphisms in Mixed Mycobacterium tuberculosis DNA Extracts. Journal of Clinical Microbiology, 2006, 44, 3826-3829.	3.9	28
49	Metronidazole plus Rifampin Sterilizes Long-Term Dormant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 1537-1540.	3.2	26
50	Treatment of Tuberculosis in a Region with High Drug Resistance: Outcomes, Drug Resistance Amplification and Re-Infection. PLoS ONE, 2011, 6, e23081.	2.5	26
51	Current use and acceptability of novel diagnostic tests for active tuberculosis: a worldwide survey. Jornal Brasileiro De Pneumologia, 2017, 43, 380-392.	0.7	26
52	Resistance to beta-lactams in Mycobacterium fortuitum. Antimicrobial Agents and Chemotherapy, 1992, 36, 1068-1072.	3.2	25
53	External Quality Assessment for Tuberculosis Diagnosis and Drug Resistance in the European Union: A Five Year Multicentre Implementation Study. PLoS ONE, 2016, 11, e0152926.	2.5	25
54	Mycobacterium tuberculosis Is Selectively Killed by Rifampin and Rifapentine in Hypoxia at Neutral pH. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	25

#	Article	IF	CITATIONS
55	Infection of Human Dendritic Cells with a Mycobacterium tuberculosis sigE Mutant Stimulates Production of High Levels of Interleukin-10 but Low Levels of CXCL10: Impact on the T-Cell Response. Infection and Immunity, 2006, 74, 3296-3304.	2.2	24
56	A Rapid Unraveling of the Activity and Antibiotic Susceptibility of Mycobacteria. Antimicrobial Agents and Chemotherapy, 2019, 63 , .	3.2	23
57	Antigenic properties and immunoelectron microscopic localization of Mycobacterium fortuitum beta-lactamase. Antimicrobial Agents and Chemotherapy, 1995, 39, 739-745.	3.2	21
58	Influence of Mycobacterium bovis Bacillus Calmette Guelin on In Vitro Induction of CD1 Molecules in Human Adherent Mononuclear Cells. Infection and Immunity, 2001, 69, 7461-7470.	2.2	21
59	Type Frequency and Antimicrobial Susceptibility of Mycobacterium avium-intracellulare Complex Strains Isolated in Italy from AIDS and Non-AIDS Patients. Journal of Chemotherapy, 1996, 8, 37-42.	1.5	20
60	Drug-resistant tuberculosis among foreign-born persons in Italy: Table 1–. European Respiratory Journal, 2012, 40, 497-500.	6.7	20
61	Risk Factors for Tuberculosis in Foreign-Born People (FBP) in Italy: A Systematic Review and Meta-Analysis. PLoS ONE, 2014, 9, e94728.	2.5	19
62	Beta-lactamase of Mycobacterium fortuitum: kinetics of production and relationship with resistance to beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 1991, 35, 1760-1764.	3.2	18
63	Isolation of Nocardia asiatica from Cutaneous Ulcers of a Human Immunodeficiency Virus-Infected Patient in Italy. Journal of Clinical Microbiology, 2007, 45, 2088-2089.	3.9	17
64	Virulence and drug susceptibility of Mycobacterium celatum. Microbiology (United Kingdom), 2000, 146, 2733-2742.	1.8	17
65	Trend in rifampicin-, multidrug- and extensively drug-resistant tuberculosis in Italy, 2009–2016. European Respiratory Journal, 2018, 52, 1800070.	6.7	16
66	Expression of Proinflammatory and Regulatory Cytokines via NF-κB and MAPK-Dependent and IFN Regulatory Factor-3-Independent Mechanisms in Human Primary Monocytes Infected by <i>Mycobacterium tuberculosis⟨i⟩. Clinical and Developmental Immunology, 2011, 2011, 1-8.</i>	3.3	14
67	The Combination Rifampin-Nitazoxanide, but Not Rifampin-Isoniazid-Pyrazinamide-Ethambutol, Kills Dormant Mycobacterium tuberculosis in Hypoxia at Neutral pH. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	13
68	Moxifloxacin Activates the SOS Response in Mycobacterium tuberculosis in a Dose- and Time-Dependent Manner. Microorganisms, 2021, 9, 255.	3.6	13
69	Upregulation of p75 Tumor Necrosis Factor Alpha Receptor in <i>Mycobacterium avium</i> Infected Mice: Evidence for a Functional Role. Infection and Immunity, 1999, 67, 5762-5767.	2.2	13
70	Activity of Antimicrobial Drugs Evaluated by Agar Dilution and Radiometric Methods against Strains of Nocardia asteroides Isolated in Italy from Immunocompromised Patients. Journal of Chemotherapy, 1994, 6, 29-34.	1.5	12
71	Identification of Mycobacterium tuberculosis complex, Mycobacterium avium and Mycobacterium intracellulare by selective nested polymerase chain reaction. Molecular and Cellular Probes, 1995, 9, 321-326.	2.1	12
72	Monitoring the quality of laboratories and the prevalence of resistance to antituberculosis drugs: Italy, 1998–2000. European Respiratory Journal, 2003, 21, 129-134.	6.7	12

#	Article	IF	Citations
73	Induction of Mycobacterium avium proteins upon infection of human macrophages. Proteomics, 2004, 4, 3078-3083.	2.2	12
74	<i>Mycobacterium tuberculosis</i> Drug Resistance, Abkhazia. Emerging Infectious Diseases, 2005, 11, 501-503.	4.3	12
75	Tuberculosis in migrants from 106 countries to Italy, 2008–2014. European Respiratory Journal, 2016, 47, 1273-1276.	6.7	12
76	Activity of drugs against dormant Mycobacterium tuberculosis. International Journal of Mycobacteriology, 2016, 5, S94-S95.	0.6	11
77	Moving towards tuberculosis elimination: a call for action from Italy and a possible model for other low tuberculosis incidence countries. European Respiratory Journal, 2017, 49, 1602242.	6.7	11
78	Mycobacterium tuberculosis and SARS-CoV-2 Coinfections: A Review. Frontiers in Microbiology, 2021, 12, 747827.	3.5	11
79	Proficiency testing of first- and second-line anti-tuberculosis drugs in Italy: Figure 1–. European Respiratory Journal, 2012, 39, 1263-1266.	6.7	10
80	In VitroActivity of Clarithromycin Alone or in Combination with Other Antimicrobial Agents againstMycobacterium avium-intracellulare.Complex Strains Isolated from AIDS Patients. Journal of Chemotherapy, 1991, 3, 357-362.	1.5	9
81	Bacillus Calmette-Guerin Down-Regulates CD1b Induction by Granulocyte-Macrophage Colony Stimulating Factor in Human Peripheral Blood Monocytes. Journal of Chemotherapy, 2001, 13, 52-58.	1.5	9
82	Immune response and protection by DNA vaccines expressing antigen 85B of Mycobacterium tuberculosis. FEMS Microbiology Letters, 2006, 262, 210-215.	1.8	9
83	Activities of Isoniazid Alone and in Combination with Other Drugs against <i>Mycobacterium avium</i> Infection in Beige Mice. Antimicrobial Agents and Chemotherapy, 1998, 42, 712-714.	3.2	9
84	Usefulness of the BACTEC MGIT 960 System for Isolation of Mycobacterium tuberculosis from Sputa Subjected to Long-Term Storage. Journal of Clinical Microbiology, 2007, 45, 575-576.	3.9	8
85	Validation of the agar proportion and 2 liquid systems for testing the susceptibility of Mycobacterium tuberculosis to moxifloxacin. Diagnostic Microbiology and Infectious Disease, 2007, 57, 283-287.	1.8	8
86	Late Acquisition of Hyporesponsiveness to Lipopolysaccharide by Mycobacterium avium-Infected Human Macrophages in Producing Tumor Necrosis Factor- but Not Interleukin-l and -6. Journal of Infectious Diseases, 1996, 173, 1030-1034.	4.0	7
87	Non-inducible, mainly cell-associated beta-lactamase from Nocardia asteroides strain 108. Journal of Antimicrobial Chemotherapy, 1997, 40, 5-11.	3.0	7
88	Mycobacterium tuberculosisComplex Drug Resistance in Italy. Emerging Infectious Diseases, 2004, 10, 752-753.	4.3	7
89	Recombinant GroES in combination with CpG oligodeoxynucleotides protects mice against Mycobacterium avium infection. Journal of Medical Microbiology, 2002, 51, 1071-1079.	1.8	7
90	Inhibitors and Inactivators of Beta-Lactamase from Mycobacterium fortuitum. Journal of Chemotherapy, 1989, 1, 293-297.	1.5	6

#	Article	IF	CITATIONS
91	Activity of Antimicrobial Agents Against Mycobacterium avium-intracellulare Complex (MAC) Strains Isolated in Italy from AIDS-Patients. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1992, 276, 512-520.	0.5	6
92	Mycobacterium avium infection in BALB/c and SCID mice. Journal of Medical Microbiology, 1999, 48, 577-583.	1.8	4
93	Activity of Drugs Against Dormant <i>Mycobacterium tuberculosis</i> . Journal of Chemotherapy, 2011, 23, 175-178.	1.5	4
94	Pyrazinamide susceptibility testing: proposed new standard with the BACTEC TM MGIT TM 960 system. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1677-1680.	1.2	4
95	Improved Bactec MGIT 960 Pyrazinamide Test Decreases Detection of False Mycobacterium tuberculosis Pyrazinamide Resistance. Journal of Clinical Microbiology, 2017, 55, 3552-3553.	3.9	4
96	The Antimalarial Mefloquine Shows Activity against Mycobacterium abscessus, Inhibiting Mycolic Acid Metabolism. International Journal of Molecular Sciences, 2021, 22, 8533.	4.1	4
97	Revisiting problems and solutions to decrease Mycobacterium tuberculosis pyrazinamide false resistance when using the Bactec MGIT 960 system. Annali Dell'Istituto Superiore Di Sanita, 2019, 55, 51-54.	0.4	4
98	Activity of Drug Combinations against Mycobacterium abscessus Grown in Aerobic and Hypoxic Conditions. Microorganisms, 2022, 10, 1421.	3.6	4
99	Activity of DNA-targeted C8-linked pyrrolobenzodiazepine–heterocyclic polyamide conjugates against aerobically and hypoxically grown Mycobacterium tuberculosis under acidic and neutral conditions. Journal of Antibiotics, 2018, 71, 831-834.	2.0	3
100	Exposure of BALB/c mice to low doses of Mycobacterium avium increases resistance to a subsequent high-dose infection. Microbiology (United Kingdom), 2002, 148, 3173-3181.	1.8	3
101	Use of probiotics in medical devices applied to some common pathologies. Annali Dell'Istituto Superiore Di Sanita, 2019, 55, 380-385.	0.4	3
102	Activities of Eighteen Antimicrobial Regimens againstMycobacterium aviumInfection in Beige Mice. Microbial Drug Resistance, 1999, 5, 227-233.	2.0	2
103	Drug-resistant tuberculosis in Naples, 2008-2013. Annali Dell'Istituto Superiore Di Sanita, 2016, 52, 603-607.	0.4	2
104	Pyrazinamide Resistance in Multidrug-Resistant Strains of Mycobacterium tuberculosis Isolated in Abkhazia. Journal of Chemotherapy, 2007, 19, 106-107.	1.5	1
105	Induction of Mycobacterium avium proteins upon infection of human macrophages., 0,, 279-287.		o