Robert A Craddock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981007/publications.pdf

Version: 2024-02-01

32 papers 2,667 citations

304743 22 h-index 32 g-index

33 all docs

33 docs citations

times ranked

33

1844 citing authors

#	Article	IF	CITATIONS
1	Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus, 2021, 365, 114499.	2.5	39
2	Climate Simulations of Early Mars With Estimated Precipitation, Runoff, and Erosion Rates. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006160.	3.6	36
3	Assessing the Accuracy of Paleodischarge Estimates for Rivers on Mars. Geophysical Research Letters, 2019, 46, 11738-11746.	4.0	8
4	An Assessment of Regional Variations in Martian Modified Impact Crater Morphology. Journal of Geophysical Research E: Planets, 2018, 123, 763-779.	3.6	9
5	The geological and climatological case for a warmer and wetter early Mars. Nature Geoscience, 2018, 11, 230-237.	12.9	116
6	Measuring impact crater depth throughout the solar system. Meteoritics and Planetary Science, 2018, 53, 583-637.	1.6	41
7	The changing nature of rainfall during the early history of Mars. Icarus, 2017, 293, 172-179.	2.5	24
8	Depositional processes of alluvial fans along the Hilina Pali fault scarp, Island of Hawaii. Geomorphology, 2017, 296, 104-112.	2.6	2
9	Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety. Icarus, 2016, 274, 50-72.	2.5	17
10	Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces. Journal of Geophysical Research E: Planets, 2015, 120, 1736-1750.	3 . 6	13
11	Origin and development of theater-headed valleys in the Atacama Desert, northern Chile: Morphological analogs to martian valley networks. Icarus, 2014, 243, 296-310.	2.5	17
12	Age dates of valley network drainage basins and subbasins within Sabae and Arabia Terrae, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1302-1310.	3. 6	5
13	Aeolian processes on the terrestrial planets. Progress in Physical Geography, 2012, 36, 110-124.	3.2	24
14	Drainage network development in the KeanakÄkoâ€~i tephra, KÄ«lauea Volcano, Hawaiâ€~i: Implications for fluvial erosion and valley network formation on early Mars. Journal of Geophysical Research, 2012, 117, .	3.3	18
15	Topographic influences on development of Martian valley networks. Journal of Geophysical Research, 2011, 116, .	3.3	57
16	Are Phobos and Deimos the result of a giant impact?. Icarus, 2011, 211, 1150-1161.	2.5	154
17	Characterization of fluvial activity in Parana Valles using different age-dating techniques. Icarus, 2010, 207, 686-698.	2.5	26
18	Topographic data reveal a buried fluvial landscape in the Simpson Desert, Australia. Australian Journal of Earth Sciences, 2010, 57, 141-149.	1.0	13

#	Article	IF	CITATIONS
19	Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus, 2009, 204, 512-526.	2.5	95
20	Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes. Journal of Geophysical Research, 2006, 111 , .	3.3	45
21	Interior channels in Martian valley networks: Discharge and runoff production. Geology, 2005, 33, 489.	4.4	136
22	Key Science Questions from the Second Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life. Astrobiology, 2005, 5, 663-689.	3.0	30
23	An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research, 2005, 110, .	3.3	334
24	Crater degradation in the Martian highlands: Morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. Journal of Geophysical Research, 2004, 109, .	3.3	125
25	A Large Paleolake Basin at the Head of Ma'adim Vallis, Mars. Science, 2002, 296, 2209-2212.	12.6	167
26	The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 2002, 107, 21-1-21-36.	3.3	480
27	Simulated degradation of lunar impact craters and a new method for age dating farside mare deposits. Journal of Geophysical Research, 2000, 105, 20387-20401.	3.3	81
28	Geology of central Chryse Planitia and the Viking 1 landing site: Implications for the Mars Pathfinder mission. Journal of Geophysical Research, 1997, 102, 4161-4183.	3.3	28
29	Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. Journal of Geophysical Research, 1997, 102, 13321-13340.	3.3	192
30	Age relations of Martian highland drainage basins. Journal of Geophysical Research, 1995, 100, 11765.	3.3	19
31	Geomorphic evolution of the Martian highlands through ancient fluvial processes. Journal of Geophysical Research, 1993, 98, 3453-3468.	3.3	221
32	Resurfacing of the Martian Highlands in the Amenthes and Tyrrhena region. Journal of Geophysical Research, 1990, 95, 14265-14278.	3.3	65