
Matthew S Hayden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDK1 Is Required for Maintenance of CD4+ Foxp3+ Regulatory T Cell Function. Journal of Immunology, 2021, 206, 1776-1783.	0.4	7
2	Analysis of CRISPR/Cas9 Guide RNA Efficiency and Specificity Against Genetically Diverse HIV-1 Isolates. AIDS Research and Human Retroviruses, 2020, 36, 862-874.	0.5	6
3	Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Research, 2020, 9, 281.	0.8	8
4	The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function. Journal of Immunology, 2018, 200, 2362-2371.	0.4	74
5	An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages. Cell Reports, 2018, 22, 2654-2666.	2.9	74
6	PKK deletion in basal keratinocytes promotes tumorigenesis after chemical carcinogenesis. Carcinogenesis, 2018, 39, 418-428.	1.3	10
7	Evaluation of the Relationship between Alopecia Areata and Viral Antigen Exposure. American Journal of Clinical Dermatology, 2018, 19, 119-126.	3.3	17
8	Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature, 2018, 559, 114-119.	13.7	145
9	Epithelial TRAF6 drives IL-17–mediated psoriatic inflammation. JCI Insight, 2018, 3, .	2.3	36
10	NF-κB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell, 2017, 170, 1096-1108.e13.	13.5	222
11	An NF-κB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function. Immunity, 2017, 47, 450-465.e5.	6.6	161
12	Toll-Like Receptor 11 (TLR11) Interacts with Flagellin and Profilin through Disparate Mechanisms. PLoS ONE, 2016, 11, e0148987.	1.1	52
13	Molecular cues for asymmetric cell division in epidermis. Journal of Dermatological Science, 2016, 84, e55.	1.0	0
14	PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division. Cell Reports, 2016, 15, 1615-1623.	2.9	34
15	Mice Lacking TLR11 Exhibit Variable Salmonella typhi Susceptibility. Cell, 2016, 164, 829-830.	13.5	14
16	mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nature Communications, 2016, 7, 10255.	5.8	49
17	Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget, 2016, 7, 75954-75967.	0.8	35
18	Cutting Edge: NF-κB p65 and c-Rel Control Epidermal Development and Immune Homeostasis in the Skin. Journal of Immunology, 2015, 194, 2472-2476.	0.4	41

MATTHEW S HAYDEN

#	Article	IF	CITATIONS
19	Electrophoretic Mobility Shift Assay Analysis of NF-κB DNA Binding. Methods in Molecular Biology, 2015, 1280, 3-13.	0.4	6
20	Regulation of Fibroblast Growth Factor-inducible 14 (Fn14) Expression Levels via Ligand-independent Lysosomal Degradation. Journal of Biological Chemistry, 2014, 289, 12976-12988.	1.6	24
21	Innate sense of purpose for IKKβ. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17348-17349.	3.3	9
22	Regulation of NF-κB by TNF family cytokines. Seminars in Immunology, 2014, 26, 253-266.	2.7	755
23	Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity, 2013, 38, 119-130.	6.6	279
24	Transition from Heterotypic to Homotypic PDK1 Homodimerization Is Essential for TCR-Mediated NF-κB Activation. Journal of Immunology, 2013, 190, 4508-4515.	0.4	16
25	The Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling. PLoS ONE, 2013, 8, e55378.	1.1	20
26	A Role for NF-κB Activity in Skin Hyperplasia and the Development of Keratoacanthomata in Mice. PLoS ONE, 2013, 8, e71887.	1.1	26
27	A Mouse Model of Salmonella Typhi Infection. Cell, 2012, 151, 590-602.	13.5	189
28	NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes and Development, 2012, 26, 203-234.	2.7	1,404
29	A less-canonical, canonical NF-κB pathway in DCs. Nature Immunology, 2012, 13, 1139-1141.	7.0	10
30	Celebrating 25 years of NFâ€₽̂B research. Immunological Reviews, 2012, 246, 5-13.	2.8	179
31	NF-κB in immunobiology. Cell Research, 2011, 21, 223-244.	5.7	802
32	NF-κB, Inflammation, and Metabolic Disease. Cell Metabolism, 2011, 13, 11-22.	7.2	1,564
33	Crosstalk in NF-κB signaling pathways. Nature Immunology, 2011, 12, 695-708.	7.0	1,499
34	T Regulatory Cells Maintain Intestinal Homeostasis by Suppressing γδT Cells. Immunity, 2010, 33, 791-803.	6.6	148
35	ll̂ºBβ acts to inhibit and activate gene expression during the inflammatory response. Nature, 2010, 466, 1115-1119.	13.7	175
36	Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease. Genes and Development, 2010, 24, 1709-1717.	2.7	87

MATTHEW S HAYDEN

#	Article	IF	CITATIONS
37	The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-κB and activate T cells. Nature Immunology, 2009, 10, 158-166.	7.0	119
38	Nuclear Factor-l [®] B Modulates Regulatory T Cell Development by Directly Regulating Expression of Foxp3 Transcription Factor. Immunity, 2009, 31, 921-931.	6.6	348
39	New regulators of NF-κB in inflammation. Nature Reviews Immunology, 2008, 8, 837-848.	10.6	1,163
40	Shared Principles in NF-ήB Signaling. Cell, 2008, 132, 344-362.	13.5	4,027
41	Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes and Development, 2008, 22, 1159-1173.	2.7	124
42	SnapShot: NF-κB Signaling Pathways. Cell, 2006, 127, 1286.e1-1286.e2.	13.5	67
43	NF-ήB and the immune response. Oncogene, 2006, 25, 6758-6780.	2.6	1,050
44	Response to Comment on "PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-ÂB Activation". Science, 2006, 312, 55b-55b.	6.0	5
45	CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. Journal of Cell Biology, 2006, 172, 1045-1056.	2.3	110
46	NFB in the Innate Immune System. , 2006, , 107-129.		0
47	NFB in the Adaptive Immune System. , 2006, , 131-157.		0
48	TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes and Development, 2005, 19, 2668-2681.	2.7	632
49	TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein. Science, 2005, 308, 1626-1629.	6.0	862
50	PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-ÂB Activation. Science, 2005, 308, 114-118.	6.0	230
51	Keeping cartographers busy. Nature Cell Biology, 2004, 6, 87-89.	4.6	0
52	A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria. Science, 2004, 303, 1522-1526.	6.0	909
53	Signaling to NF-ÂB. Genes and Development, 2004, 18, 2195-2224.	2.7	3,444
54	Real-time quantitation of HIV-1 p24 and SIV p27 using fluorescence-linked antigen quantification assays. Aids, 2003, 17, 629-631.	1.0	9

#	Article	IF	CITATIONS
55	Virologic and Immunologic Consequences of Discontinuing Combination Antiretroviral-Drug Therapy in HIV-Infected Patients with Detectable Viremia. New England Journal of Medicine, 2001, 344, 472-480.	13.9	672
56	Protease inhibitor-resistant HIV-1 from patients with preserved CD4 cell counts is cytopathic in activated CD4 T lymphocytes. Aids, 2001, 15, 179-184.	1.0	11
57	Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nature Medicine, 2001, 7, 712-718.	15.2	141