Kyriakos C Stylianou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980351/publications.pdf

Version: 2024-02-01

71 papers 4,979 citations

94433 37 h-index 91884 69 g-index

79 all docs

79 docs citations

79 times ranked 6642 citing authors

#	Article	IF	CITATIONS
1	A Guest-Responsive Fluorescent 3D Microporous Metalâ^'Organic Framework Derived from a Long-Lifetime Pyrene Core. Journal of the American Chemical Society, 2010, 132, 4119-4130.	13.7	456
2	Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576, 253-256.	27.8	438
3	An Adaptable Peptide-Based Porous Material. Science, 2010, 329, 1053-1057.	12.6	356
4	Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis, 2019, 9, 4247-4270.	11.2	209
5	Shape engineering of metal–organic frameworks. Polyhedron, 2018, 145, 1-15.	2.2	172
6	Capturing chemical intuition in synthesis of metal-organic frameworks. Nature Communications, 2019, 10, 539.	12.8	153
7	Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications. Coordination Chemistry Reviews, 2018, 377, 259-306.	18.8	151
8	Selective CO ₂ Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis. Crystal Growth and Design, 2014, 14, 2092-2096.	3.0	148
9	Direct Onâ€Surface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature. Chemistry - A European Journal, 2015, 21, 10666-10670.	3.3	131
10	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	6.0	120
11	Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gasâ€Sparged Column. Advanced Functional Materials, 2018, 28, 1801596.	14.9	120
12	Biologically derived metal organic frameworks. Coordination Chemistry Reviews, 2017, 349, 102-128.	18.8	116
13	Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MlLâ€125â€NH ₂ under Visible Light Irradiation. Advanced Functional Materials, 2018, 28, 1806368.	14.9	110
14	Photocatalytic hydrogen generation from a visible-light responsive metal–organic framework system: the impact of nickel phosphide nanoparticles. Journal of Materials Chemistry A, 2018, 6, 2476-2481.	10.3	94
15	CO2 selectivity of a 1D microporous adenine-based metal–organic framework synthesised in water. Chemical Communications, 2011, 47, 3389.	4.1	92
16	Inâ€Situ Formation of Frustrated Lewis Pairs in a Waterâ€Tolerant Metalâ€Organic Framework for the Transformation of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 5371-5375.	13.8	91
17	Protecting Metal–Organic Framework Crystals from Hydrolytic Degradation by Sprayâ€Dry Encapsulating Them into Polystyrene Microspheres. Advanced Materials, 2015, 27, 869-873.	21.0	90
18	A Metalâ^'Organic Framework with a Covalently Prefabricated Porous Organic Linker. Journal of the American Chemical Society, 2010, 132, 12773-12775.	13.7	88

#	Article	IF	CITATIONS
19	Dimensionality Transformation through Paddlewheel Reconfiguration in a Flexible and Porous Zn-Based Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 20466-20478.	13.7	85
20	Enhanced Stability in Rigid Peptideâ€Based Porous Materials. Angewandte Chemie - International Edition, 2012, 51, 11044-11048.	13.8	85
21	Rational Design of a Low-Cost, High-Performance Metal–Organic Framework for Hydrogen Storage and Carbon Capture. Journal of Physical Chemistry C, 2017, 121, 1171-1181.	3.1	84
22	Selective, Fast-Response, and Regenerable Metal–Organic Framework for Sampling Excess Fluoride Levels in Drinking Water. Journal of the American Chemical Society, 2019, 141, 3052-3058.	13.7	84
23	Switchable Surface Hydrophobicity–Hydrophilicity of a Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 16049-16053.	13.8	76
24	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14239-14247.	8.0	73
25	Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30035-30039.	8.0	71
26	In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis. Chemical Science, 2016, 7, 6263-6272.	7.4	69
27	A novel integrated Cr(<scp>vi</scp>) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020, 8, 9629-9637.	10.3	64
28	Metal–Organic Frameworks: From Molecules/Metal Ions to Crystals to Superstructures. Chemistry - A European Journal, 2014, 20, 5192-5201.	3.3	61
29	Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor. Nature Communications, 2019, 10, 1612.	12.8	58
30	A Highly Water-Stable <i>meta</i> -Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. Journal of the American Chemical Society, 2020, 142, 8299-8311.	13.7	54
31	A Recyclable Metal–Organic Framework as a Dual Detector and Adsorbent for Ammonia. Chemistry - A European Journal, 2017, 23, 13602-13606.	3.3	52
32	On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH ₂ . Journal of Physical Chemistry C, 2020, 124, 4065-4072.	3.1	50
33	Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal–organic framework. Chemical Science, 2019, 10, 6140-6148.	7.4	45
34	Diclofenac biodegradation by newly isolated Klebsiella sp. KSC: Microbial intermediates and ecotoxicological assessment. Journal of Environmental Chemical Engineering, 2018, 6, 3242-3248.	6.7	44
35	Two New Adenine-Based Co(II) Coordination Polymers: Synthesis, Crystal Structure, Coordination Modes, and Reversible Hydrochromic Behavior. Crystal Growth and Design, 2015, 15, 3182-3189.	3.0	42
36	Mixed-Phase MOF-Derived Titanium Dioxide for Photocatalytic Hydrogen Evolution: The Impact of the Templated Morphology. ACS Applied Energy Materials, 2018, 1, 6541-6548.	5.1	42

#	Article	IF	CITATIONS
37	Femtolitre chemistry assisted by microfluidic pen lithography. Nature Communications, 2013, 4, 2173.	12.8	40
38	Incarceration of Iodine in a Pyreneâ€Based Metal–Organic Framework. Chemistry - A European Journal, 2019, 25, 501-506.	3.3	38
39	Carborane Bis-pyridylalcohols as Linkers for Coordination Polymers: Synthesis, Crystal Structures, and Guest-Framework Dependent Mechanical Properties. Crystal Growth and Design, 2017, 17, 846-857.	3.0	36
40	Frustrated Lewis pair-mediated fixation of CO ₂ within a metal–organic framework. Chemical Communications, 2019, 55, 10964-10967.	4.1	35
41	Biporous Metal–Organic Framework with Tunable CO ₂ /CH ₄ Separation Performance Facilitated by Intrinsic Flexibility. ACS Applied Materials & Diterfaces, 2018, 10, 36144-36156.	8.0	33
42	Tuning the Optoelectronic Properties of Hybrid Functionalized MIL-125-NH ₂ for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5044-5051.	8.0	33
43	The influence of the enantiomeric ratio of an organic ligand on the structure and chirality of metal–organic frameworks. Chemical Communications, 2014, 50, 13829-13832.	4.1	30
44	Engineering Homochiral Metal–Organic Frameworks by Spatially Separating 1D Chiral Metal–Peptide Ladders: Tuning the Pore Size for Enantioselective Adsorption. Chemistry - A European Journal, 2015, 21, 9964-9969.	3.3	30
45	A recyclable metal–organic framework for ammonia vapour adsorption. Chemical Communications, 2020, 56, 9600-9603.	4.1	30
46	Design of lanthanide-based metal–organic frameworks with enhanced near-infrared emission. Journal of Materials Chemistry A, 2020, 8, 10188-10192.	10.3	28
47	Metal-organic frameworks for white light emission: From synthesis to device fabrication. Coordination Chemistry Reviews, 2022, 459, 214441.	18.8	27
48	Lanthanide metal–organic frameworks for the fixation of CO ₂ under aqueous-rich and mixed-gas conditions. Journal of Materials Chemistry A, 2022, 10, 1442-1450.	10.3	26
49	Lanthanide-based near-infrared emitting metal–organic frameworks with tunable excitation wavelengths and high quantum yields. Chemical Communications, 2018, 54, 6816-6819.	4.1	25
50	Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 1888-1900.	4.0	21
51	CO ₂ Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie - International Edition, 2020, 59, 16371-16375.	13.8	21
52	Formation pathways of metal–organic frameworks proceeding through partial dissolution of the metastable phase. CrystEngComm, 2017, 19, 3407-3413.	2.6	20
53	Sustainable Capture of Aromatic Volatile Organic Compounds by a Pyrene-Based Metal–Organic Framework under Humid Conditions. Inorganic Chemistry, 2020, 59, 9029-9036.	4.0	20
54	Recent Advances in Carbon Capture with Metal–Organic Frameworks. Chimia, 2015, 69, 274.	0.6	19

#	Article	IF	CITATIONS
55	Inâ€Situ Formation of Frustrated Lewis Pairs in a Waterâ€Tolerant Metalâ€Organic Framework for the Transformation of CO ₂ . Angewandte Chemie, 2019, 131, 5425-5429.	2.0	19
56	HKUST-1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO ₂ and CH ₄ Adsorption and Separation. ACS Applied Nano Materials, 2021, 4, 12712-12725.	5.0	19
57	Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts. ACS Applied Materials & Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts.	8.0	15
58	Discovery of a self-healing catalyst for the hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2019, 7, 23830-23837.	10.3	14
59	Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active <i>inâ€situ</i> Generated Copper Nanoparticles. ChemCatChem, 2020, 12, 2833-2839.	3.7	14
60	Robust metal-organic frameworks for dry and wet biogas upgrading. Applied Materials Today, 2021, 22, 100933.	4.3	13
61	Taking lanthanides out of isolation: tuning the optical properties of metal–organic frameworks. Chemical Science, 2020, 11, 4164-4170.	7.4	12
62	Colorimetric detection of acidic pesticides in water. Chemical Communications, 2022, 58, 953-956.	4.1	10
63	A porous layered metal-organic framework from π–π-stacking of layers based on a Co6 building unit. Microporous and Mesoporous Materials, 2012, 157, 24-32.	4.4	9
64	A 3D Porous Metal Organic Framework Based on Infinite 1D Nickel(II) Chains with Rutile Topology Displaying Open Metal Sites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2123-2131.	1.2	9
65	Unraveling the synergy between metal–organic frameworks and co-catalysts in photocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 20493-20502.	10.3	8
66	CO 2 Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst. Angewandte Chemie, 2020, 132, 16513.	2.0	7
67	Dualâ€Functional Photocatalysis: Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MILâ€125â€NH ₂ under Visible Light Irradiation (Adv. Funct. Mater. 52/2018). Advanced Functional Materials, 2018, 28, 1870373.	14.9	6
68	Metalâ€Organic Framework Beads: Porous Metal–Organic Framework@Polymer Beads for Iodine Capture and Recovery Using a Gasâ€Sparged Column (Adv. Funct. Mater. 30/2018). Advanced Functional Materials, 2018, 28, 1870211.	14.9	5
69	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
70	Guest-dependent negative thermal expansion in a lanthanide-based metal–organic framework. CrystEngComm, 2019, 21, 5292-5298.	2.6	4
71	Tandem Pausonâ€Khand Reaction Using Carbon Dioxide as the C1â€Source. European Journal of Inorganic Chemistry, 0, , .	2.0	3