
Erik P Schartner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Silkâ€Based Functionalization Architecture for Single Fiber Imaging and Sensing. Advanced Functional Materials, 2022, 32, 2010713.	14.9	6
2	Tailored Multiâ€Color Dispersive Wave Formation in Quasiâ€Phaseâ€Matched Exposed Core Fibers. Advanced Science, 2022, 9, e2103864.	11.2	6
3	The effect of discrete wavelengths of visible light on the developing murine embryo. Journal of Assisted Reproduction and Genetics, 2022, 39, 1825-1837.	2.5	5
4	Longitudinally thickness-controlled nanofilms on exposed core fibres enabling spectrally flattened supercontinuum generation. Light Advanced Manufacturing, 2021, 2, 1.	5.1	2
5	Protein detection enabled using functionalised silk-binding peptides on a silk-coated optical fibre. RSC Advances, 2021, 11, 22334-22342.	3.6	1
6	Single-fiber-based probe for combined imaging and pH sensing. , 2021, , .		0
7	A biophotonic approach to measure pH in small volumes in vitro: Quantifiable differences in metabolic flux around the cumulusâ€oocyteâ€complex (COC). Journal of Biophotonics, 2020, 13, e201960038.	2.3	7
8	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	21.0	31
9	Integrated Photonics: Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, 2070354.	21.0	0
10	All-fiber all-optical quantitative polymerase chain reaction (qPCR). Sensors and Actuators B: Chemical, 2020, 323, 128681.	7.8	27
11	Resonanceâ€Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers. Laser and Photonics Reviews, 2020, 14, 1900418.	8.7	6
12	Silk: A bio-derived coating for optical fiber sensing applications. Sensors and Actuators B: Chemical, 2020, 311, 127864.	7.8	24
13	Single-peak fiber Bragg gratings in suspended-core optical fibers. Optics Express, 2020, 28, 23354.	3.4	3
14	Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. European Journal of Pharmacology, 2019, 858, 172495.	3.5	2
15	Short-Range Non-Bending Fully Distributed Water/Humidity Sensors. Journal of Lightwave Technology, 2019, 37, 2014-2022.	4.6	6
16	Improved method for optical fiber temperature probe implantation in brains of free-moving rats. Journal of Neuroscience Methods, 2019, 313, 24-28.	2.5	11
17	Stability of Grating-Based Optical Fiber Sensors at High Temperature. IEEE Sensors Journal, 2019, 19, 2978-2983.	4.7	26
18	Quantum noise limited nanoparticle detection with exposed-core fiber. Optics Express, 2019, 27, 18601.	3.4	8

ERIK P SCHARTNER

#	Article	IF	CITATIONS
19	Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber. Optics Letters, 2019, 44, 626.	3.3	9
20	Perspective: Biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics, 2018, 3, .	5.7	31
21	Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue. Optics Letters, 2018, 43, 1682.	3.3	27
22	A portable device for cancer margin assessment using a pH sensitive optical fibre probe. , 2017, , .		0
23	Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy. Applied Spectroscopy Reviews, 2017, 52, 439-455.	6.7	21
24	Plasmonic nanoparticle-functionalized exposed-core fiber—an optofluidic refractive index sensing platform. Optics Letters, 2017, 42, 4395.	3.3	22
25	Fabrication of low-loss, small-core exposed core microstructured optical fibers. Optical Materials Express, 2017, 7, 1496.	3.0	17
26	Upconversion Nanocrystalâ€Ðoped Glass: A New Paradigm for Photonic Materials. Advanced Optical Materials, 2016, 4, 1507-1517.	7.3	75
27	Cancer Detection in Human Tissue Samples Using a Fiber-Tip pH Probe. Cancer Research, 2016, 76, 6795-6801.	0.9	26
28	Biosensors for detecting stress in developing embryos. Proceedings of SPIE, 2016, , .	0.8	0
29	A portable optical fiber pH probe for cancer margin detection. , 2016, , .		3
30	Novel imaging tools for investigating the role of immune signalling in the brain. Brain, Behavior, and Immunity, 2016, 58, 40-47.	4.1	12
31	Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips. Optics Express, 2016, 24, 18541.	3.4	20
32	Portable optical fiber probe for in vivo brain temperature measurements. Biomedical Optics Express, 2016, 7, 3069.	2.9	61
33	Single-ring hollow core optical fibers made by glass billet extrusion for Raman sensing. Optics Express, 2016, 24, 5911.	3.4	21
34	Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and Actuators B: Chemical, 2016, 227, 117-127.	7.8	148
35	Comparison of the Fluorescence Sensing Performance of Microstructured Optical Fibres and Multi-mode Fibre Tips. , 2016, , .		0
36	Upconversion Nanocrystals Doped Glass: A New Paradigm for Integrated Optical Glass. , 2016, , .		1

3

ERIK P SCHARTNER

#	Article	IF	CITATIONS
37	A portable optical fiber probe for in vivo brain temperature measurements. Proceedings of SPIE, 2016, , .	0.8	1
38	A simple optical fibre probe for differentiation between healthy and tumorous tissue. Proceedings of SPIE, 2016, , .	0.8	0
39	Taming the Light in Microstructured Optical Fibers for Sensing. International Journal of Applied Glass Science, 2015, 6, 229-239.	2.0	35
40	A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips. Sensors, 2015, 15, 31904-31913.	3.8	37
41	Boronate probes for the detection of hydrogen peroxide release from human spermatozoa. Free Radical Biology and Medicine, 2015, 81, 69-76.	2.9	39
42	Fibre tip pH sensor for tumor detection during surgery. , 2015, , .		2
43	Localised hydrogen peroxide sensing for reproductive health. Proceedings of SPIE, 2015, , .	0.8	3
44	Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings. Sensors, 2014, 14, 21693-21701.	3.8	36
45	Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke. Biomedical Optics Express, 2014, 5, 3975.	2.9	16
46	Simple fabrication method for point temperature sensor probes using erbium ytterbium-coated optical fibres. , 2014, , .		0
47	Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, 729-734.	31.5	569
48	Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. , 2013, , .		2
49	New Tools for Measurement: Opportunities for Sensing Chemicals or Biomolecules with Optical Fibers. , 2013, , .		0
50	Enzyme activity assays within microstructured optical fibers enabled by automated alignment. Biomedical Optics Express, 2012, 3, 3304.	2.9	11
51	Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale, 2012, 4, 7448.	5.6	18
52	Sensitive fluorescence detection with microstructured optical fibers. , 2011, , .		1
53	Low concentration fluorescence sensing in suspended-core fibers. , 2011, , .		2
54	Driving down the Detection Limit in Microstructured Fiber‑Based Chemical Dip Sensors. Sensors, 2011, 11, 2961-2971.	3.8	31

ERIK P SCHARTNER

#	Article	IF	CITATIONS
55	Fusion splicing soft-glass suspended core fibers to solid silica fibers for optical fiber sensing. , 2010, ,		2
56	Sensing with suspended-core optical fibers. Optical Fiber Technology, 2010, 16, 343-356.	2.7	165
57	An optical fibre protein sensor. , 2007, , .		2
58	Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Optics Express, 2007, 15, 17819.	3.4	85
59	An optical fibre protein sensor. , 2007, , .		1