Hagen Hofmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980034/publications.pdf

Version: 2024-02-01

40 papers 3,047 citations

331670
21
h-index

289244 40 g-index

55 all docs 55 does citations

55 times ranked 2790 citing authors

#	Article	IF	CITATIONS
1	Diffusion of a disordered protein on its folded ligand. Biophysical Journal, 2022, 121, 200a.	0.5	2
2	Singleâ€Molecule FRET of Membrane Transport Proteins. ChemBioChem, 2021, 22, 2657-2671.	2.6	21
3	Allostery through DNA drives phenotype switching. Nature Communications, 2021, 12, 2967.	12.8	22
4	Does Electric Friction Matter in Living Cells?. Journal of Physical Chemistry B, 2021, 125, 6144-6153.	2.6	5
5	Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2101144118.	7.1	5
6	Hsp40s play complementary roles in the prevention of tau amyloid formation. ELife, 2021, 10, .	6.0	29
7	Diffusion of a disordered protein on its folded ligand. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
8	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie - International Edition, 2020, 59, 19121-19128.	13.8	21
9	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie, 2020, 132, 19283-19290.	2.0	3
10	Rýcktitelbild: Membrane Chemistry Tunes the Structure of a Peptide Transporter (Angew. Chem.) Tj ETQq0 0 () rgBT /Ον 2.0	erlock 10 Tf 5
11	Polymer effects modulate binding affinities in disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19506-19512.	7.1	63
12	Slow domain reconfiguration causes power-law kinetics in a two-state enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 513-518.	7.1	34
13	Internal friction in an intrinsically disordered protein—Comparing Rouse-like models with experiments. Journal of Chemical Physics, 2018, 148, 123326.	3.0	32
14	Origin of Internal Friction in Disordered Proteins Depends on Solvent Quality. Journal of Physical Chemistry B, 2018, 122, 11478-11487.	2.6	19
15	Occupancies in the DNA-Binding Pathways of Intrinsically Disordered Helix-Loop-Helix Leucine-Zipper Proteins. Journal of Physical Chemistry B, 2018, 122, 11460-11467.	2.6	14
16	Comment on $\hat{a} \in \mathbb{C}$ Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water $\hat{a} \in \mathbb{C}$ Science, 2018, 361, .	12.6	36
17	Quantifying kinetics from time series of single-molecule Förster resonance energy transfer efficiency histograms. Nanotechnology, 2017, 28, 114002.	2.6	11
18	Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annual Review of Biophysics, 2016, 45, 207-231.	10.0	271

#	Article	lF	Citations
19	Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods. Journal of the American Chemical Society, 2016, 138, 11714-11726.	13.7	171
20	Speedy motion for function. Nature Chemical Biology, 2016, 12, 576-577.	8.0	0
21	Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory. Methods and Applications in Fluorescence, 2016, 4, 042003.	2.3	10
22	Quantitative Interpretation of FRET Experiments via Molecular Simulation: Force Field and Validation. Biophysical Journal, 2015, 108, 2721-2731.	0.5	59
23	Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay. Nature Communications, 2015, 6, 8624.	12.8	16
24	Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13355-13360.	7.1	103
25	Role of Denatured-State Properties in Chaperonin Action Probed by Single-Molecule Spectroscopy. Biophysical Journal, 2014, 107, 2891-2902.	0.5	3
26	Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biological Chemistry, 2014, 395, 689-698.	2.5	7
27	Temperature-dependent solvation modulates the dimensions of disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5213-5218.	7.1	161
28	Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4874-4879.	7.1	212
29	Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nature Protocols, 2013, 8, 1459-1474.	12.0	76
30	Single-Molecule Spectroscopy of Cold Denaturation and the Temperature-Induced Collapse of Unfolded Proteins. Journal of the American Chemical Society, 2013, 135, 14040-14043.	13.7	65
31	Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Current Opinion in Structural Biology, 2013, 23, 36-47.	5.7	252
32	Single-molecule spectroscopy of the unexpected collapse of an unfolded protein at low pH. Journal of Chemical Physics, 2013, 139, 121930.	3.0	20
33	Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16155-16160.	7.1	393
34	Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14609-14614.	7.1	453
35	Single-molecule spectroscopy of protein folding in a chaperonin cage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11793-11798.	7.1	107
36	Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20740-20745.	7.1	211

3

#	Article	lF	CITATION
37	Fast Amide Proton Exchange Reveals Close Relation between Native-State Dynamics and Unfolding Kinetics. Journal of the American Chemical Society, 2009, 131, 140-146.	13.7	19
38	The Folding Pathway of Onconase Is Directed by a Conserved Intermediate. Biochemistry, 2009, 48, 8449-8457.	2.5	17
39	Conformational stability and integrity of α-amylase from mung beans: Evidence of kinetic intermediate in GdmCl-induced unfolding. Biophysical Chemistry, 2008, 137, 95-99.	2.8	22
40	Coulomb Forces Control the Density of the Collapsed Unfolded State of Barstar. Journal of Molecular Biology, 2008, 376, 597-605.	4.2	40