Hagen Hofmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proceedings of the United States of America, 2010, 107, 14609-14614.	7.1	453
2	Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16155-16160.	7.1	393
3	Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annual Review of Biophysics, 2016, 45, 207-231.	10.0	271
4	Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Current Opinion in Structural Biology, 2013, 23, 36-47.	5.7	252
5	Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4874-4879.	7.1	212
6	Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20740-20745.	7.1	211
7	Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods. Journal of the American Chemical Society, 2016, 138, 11714-11726.	13.7	171
8	Temperature-dependent solvation modulates the dimensions of disordered proteins. Proceedings of the United States of America, 2014, 111, 5213-5218.	7.1	161
9	Single-molecule spectroscopy of protein folding in a chaperonin cage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11793-11798.	7.1	107
10	Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13355-13360.	7.1	103
11	Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nature Protocols, 2013, 8, 1459-1474.	12.0	76
12	Single-Molecule Spectroscopy of Cold Denaturation and the Temperature-Induced Collapse of Unfolded Proteins. Journal of the American Chemical Society, 2013, 135, 14040-14043.	13.7	65
13	Polymer effects modulate binding affinities in disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19506-19512.	7.1	63
14	Quantitative Interpretation of FRET Experiments via Molecular Simulation: Force Field and Validation. Biophysical Journal, 2015, 108, 2721-2731.	0.5	59
15	Coulomb Forces Control the Density of the Collapsed Unfolded State of Barstar. Journal of Molecular Biology, 2008, 376, 597-605.	4.2	40
16	Comment on "Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water― Science, 2018, 361, .	12.6	36
17	Slow domain reconfiguration causes power-law kinetics in a two-state enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 513-518.	7.1	34
18	Internal friction in an intrinsically disordered protein—Comparing Rouse-like models with experiments. Journal of Chemical Physics, 2018, 148, 123326.	3.0	32

HAGEN HOFMANN

#	Article	IF	CITATIONS
19	Hsp40s play complementary roles in the prevention of tau amyloid formation. ELife, 2021, 10, .	6.0	29
20	Diffusion of a disordered protein on its folded ligand. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
21	Conformational stability and integrity of α-amylase from mung beans: Evidence of kinetic intermediate in GdmCl-induced unfolding. Biophysical Chemistry, 2008, 137, 95-99.	2.8	22
22	Allostery through DNA drives phenotype switching. Nature Communications, 2021, 12, 2967.	12.8	22
23	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie - International Edition, 2020, 59, 19121-19128.	13.8	21
24	Singleâ€Molecule FRET of Membrane Transport Proteins. ChemBioChem, 2021, 22, 2657-2671.	2.6	21
25	Single-molecule spectroscopy of the unexpected collapse of an unfolded protein at low pH. Journal of Chemical Physics, 2013, 139, 121930.	3.0	20
26	Fast Amide Proton Exchange Reveals Close Relation between Native-State Dynamics and Unfolding Kinetics. Journal of the American Chemical Society, 2009, 131, 140-146.	13.7	19
27	Origin of Internal Friction in Disordered Proteins Depends on Solvent Quality. Journal of Physical Chemistry B, 2018, 122, 11478-11487.	2.6	19
28	The Folding Pathway of Onconase Is Directed by a Conserved Intermediate. Biochemistry, 2009, 48, 8449-8457.	2.5	17
29	Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay. Nature Communications, 2015, 6, 8624.	12.8	16
30	Occupancies in the DNA-Binding Pathways of Intrinsically Disordered Helix-Loop-Helix Leucine-Zipper Proteins. Journal of Physical Chemistry B, 2018, 122, 11460-11467.	2.6	14
31	Quantifying kinetics from time series of single-molecule Förster resonance energy transfer efficiency histograms. Nanotechnology, 2017, 28, 114002.	2.6	11
32	Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory. Methods and Applications in Fluorescence, 2016, 4, 042003.	2.3	10
33	Single-molecule spectroscopy of unfolded proteins and chaperonin action. Biological Chemistry, 2014, 395, 689-698.	2.5	7
34	Does Electric Friction Matter in Living Cells?. Journal of Physical Chemistry B, 2021, 125, 6144-6153.	2.6	5
35	Quantification and demonstration of the collective constriction-by-ratchet mechanism in the dynamin molecular motor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2101144118.	7.1	5
36	Role of Denatured-State Properties in Chaperonin Action Probed by Single-Molecule Spectroscopy. Biophysical Journal, 2014, 107, 2891-2902.	0.5	3

#	Article	IF	CITATIONS
37	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie, 2020, 132, 19283-19290.	2.0	3
38	Diffusion of a disordered protein on its folded ligand. Biophysical Journal, 2022, 121, 200a.	0.5	2
39	Speedy motion for function. Nature Chemical Biology, 2016, 12, 576-577.	8.0	0

 $R\tilde{A}_{40}$ R \tilde{A}_{4} cktitelbild: Membrane Chemistry Tunes the Structure of a Peptide Transporter (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5