
Andrew N Sharpley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7979067/publications.pdf Version: 2024-02-01

ANDREW N SHADDLEY

#	Article	IF	CITATIONS
1	NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. , 1998, 8, 559-568.		4,255
2	Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. Journal of Environmental Quality, 1994, 23, 437-451.	2.0	1,132
3	Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. Journal of Environmental Quality, 2013, 42, 1308-1326.	2.0	706
4	Relating Extractable Soil Phosphorus to Phosphorus Losses in Runoff. Soil Science Society of America Journal, 1996, 60, 855-859.	2.2	555
5	Agricultural Phosphorus and Eutrophication: A Symposium Overview. Journal of Environmental Quality, 1998, 27, 251-257.	2.0	519
6	Phosphorus Forms in Manure and Compost and Their Release during Simulated Rainfall. Journal of Environmental Quality, 2000, 29, 1462-1469.	2.0	485
7	Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries and Coasts, 2002, 25, 656-676.	1.7	466
8	Dependence of Runoff Phosphorus on Extractable Soil Phosphorus. Journal of Environmental Quality, 1995, 24, 920-926.	2.0	435
9	Approximating Phosphorus Release from Soils to Surface Runoff and Subsurface Drainage. Journal of Environmental Quality, 2001, 30, 508-520.	2.0	408
10	Sustainable Biofuels Redux. Science, 2008, 322, 49-50.	12.6	379
11	Relationship between Phosphorus Levels in Three Ultisols and Phosphorus Concentrations in Runoff. Journal of Environmental Quality, 1999, 28, 170-175.	2.0	351
12	Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Overview. Journal of Environmental Quality, 2000, 29, 1-9.	2.0	343
13	Phosphorus loss from land to water: integrating agricultural and environmental management. Plant and Soil, 2001, 237, 287-307.	3.7	327
14	Hydrologic Controls on Phosphorus Loss from Upland Agricultural Watersheds. Journal of Environmental Quality, 1998, 27, 267-277.	2.0	320
15	Phosphorus Management at the Watershed Scale: A Modification of the Phosphorus Index. Journal of Environmental Quality, 2000, 29, 130-144.	2.0	309
16	The Transport of Bioavailable Phosphorus in Agricultural Runoff. Journal of Environmental Quality, 1992, 21, 30-35.	2.0	282
17	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	12.9	282
18	Effect of Mineral and Manure Phosphorus Sources on Runoff Phosphorus. Journal of Environmental Quality, 2002, 31, 2026-2033.	2.0	263

#	Article	IF	CITATIONS
19	Critical source area controls on water quality in an agricultural watershed located in the Chesapeake Basin. Ecological Engineering, 2000, 14, 325-335.	3.6	245
20	Depth of Surface Soilâ€runoff Interaction as Affected by Rainfall, Soil Slope, and Management. Soil Science Society of America Journal, 1985, 49, 1010-1015.	2.2	240
21	Surface Runoff and Tile Drainage Transport of Phosphorus in the Midwestern United States. Journal of Environmental Quality, 2015, 44, 495-502.	2.0	240
22	Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and "Postnormal―Science. Journal of Environmental Quality, 2013, 42, 295-304.	2.0	238
23	Water Quality Remediation Faces Unprecedented Challenges from "Legacy Phosphorus― Environmental Science & Technology, 2013, 47, 8997-8998.	10.0	228
24	Managing agricultural phosphorus for water quality protection: principles for progress. Plant and Soil, 2011, 349, 169-182.	3.7	226
25	Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?. Journal of Environmental Quality, 2017, 46, 123-132.	2.0	226
26	Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure. Soil Science Society of America Journal, 2004, 68, 2048-2057.	2.2	223
27	Terminology for Phosphorus Transfer. Journal of Environmental Quality, 2000, 29, 10-15.	2.0	222
28	A Conceptual Approach for Integrating Phosphorus and Nitrogen Management at Watershed Scales. Journal of Environmental Quality, 2000, 29, 158-166.	2.0	221
29	The Selection Erosion of Plant Nutrients in Runoff. Soil Science Society of America Journal, 1985, 49, 1527-1534.	2.2	218
30	Phosphorus Movement in the Landscape. Journal of Production Agriculture, 1993, 6, 492-500.	0.4	215
31	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	5.5	210
32	Relating Soil Phosphorus to Dissolved Phosphorus in Runoff: A Single Extraction Coefficient for Water Quality Modeling. Journal of Environmental Quality, 2005, 34, 572-580.	2.0	200
33	Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems, 2016, 104, 393-412.	2.2	199
34	Nitrogen and Phosphorus Fate from Longâ€Term Poultry Litter Applications to Oklahoma Soils. Soil Science Society of America Journal, 1993, 57, 1131-1137.	2.2	185
35	Phosphorus Research Strategies to Meet Agricultural and Environmental Challenges of the 21st Century. Journal of Environmental Quality, 2000, 29, 176-181.	2.0	177
36	Effect of Broadcast Manure on Runoff Phosphorus Concentrations over Successive Rainfall Events. Journal of Environmental Quality, 2003, 32, 1072-1081.	2.0	174

#	Article	IF	CITATIONS
37	Interlaboratory Comparison of a Standardized Phosphorus Adsorption Procedure. Journal of Environmental Quality, 1984, 13, 591-595.	2.0	172
38	A Simplified Soil and Plant Phosphorus Model: I. Documentation. Soil Science Society of America Journal, 1984, 48, 800-805.	2.2	171
39	A PORTABLE RAINFALL SIMULATOR FOR PLOT–SCALE RUNOFF STUDIES. Applied Engineering in Agriculture 2002, 18, .	' 0.7	167
40	Measuring Waterâ€Extractable Phosphorus in Manure as an Indicator of Phosphorus in Runoff. Soil Science Society of America Journal, 2002, 66, 2009-2015.	2.2	165
41	Implementing agricultural phosphorus science and management to combat eutrophication. Ambio, 2015, 44, 297-310.	5.5	164
42	Soil Mixing to Decrease Surface Stratification of Phosphorus in Manured Soils. Journal of Environmental Quality, 2003, 32, 1375-1384.	2.0	162
43	The Enrichment of Soil Phosphorus in Runoff Sediments. Journal of Environmental Quality, 1980, 9, 521-526.	2.0	161
44	Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environmental Science & Technology, 2014, 48, 8417-8419.	10.0	161
45	Role of Rainfall Intensity and Hydrology in Nutrient Transport via Surface Runoff. Journal of Environmental Quality, 2006, 35, 1248-1259.	2.0	160
46	Effect of Rainfall Simulator and Plot Scale on Overland Flow and Phosphorus Transport. Journal of Environmental Quality, 2003, 32, 2172-2179.	2.0	159
47	Freeze-Thaw Effects on Phosphorus Loss in Runoff from Manured and Catch-Cropped Soils. Journal of Environmental Quality, 2005, 34, 2301-2309.	2.0	159
48	Phosphorus Cycling in Unfertilized and Fertilized Agricultural Soils. Soil Science Society of America Journal, 1985, 49, 905-911.	2.2	157
49	An Innovative Approach to Estimate Bioavailable Phosphorus in Agricultural Runoff Using Iron Oxideâ€Impregnated Paper. Journal of Environmental Quality, 1993, 22, 597-601.	2.0	157
50	Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resources Research, 1996, 32, 1795-1804.	4.2	154
51	Soil controls of phosphorus in runoff: Management barriers and opportunities. Canadian Journal of Soil Science, 2011, 91, 329-338.	1.2	154
52	The depth of rainfallâ€runoffâ€soil interaction as determined by ³² P. Water Resources Research, 1981, 17, 969-974.	4.2	148
53	Assessing Site Vulnerability to Phosphorus Loss in an Agricultural Watershed. Journal of Environmental Quality, 2001, 30, 2026-2036.	2.0	148
54	Rainfall Frequency and Nitrogen and Phosphorus Runoff from Soil Amended with Poultry Litter. Journal of Environmental Quality, 1997, 26, 1127-1132.	2.0	147

#	Article	IF	CITATIONS
55	The environmentally-sound management of agricultural phosphorus. Fertilizer Research, 1994, 39, 133-146.	0.5	146
56	Phosphorus Export from an Agricultural Watershed: Linking Source and Transport Mechanisms. Journal of Environmental Quality, 2001, 30, 1587-1595.	2.0	146
57	Wheat tillage and water quality in the Southern plains. Soil and Tillage Research, 1994, 30, 33-48.	5.6	145
58	Phosphorus Loss from an Agricultural Watershed as a Function of Storm Size. Journal of Environmental Quality, 2008, 37, 362-368.	2.0	140
59	Connecting phosphorus loss from agricultural landscapes to surface water quality. Chemistry and Ecology, 2004, 20, 1-40.	1.6	138
60	Forms of Phosphorus in Soil Receiving Cattle Feedlot Waste. Journal of Environmental Quality, 1984, 13, 211-215.	2.0	137
61	Identifying Sites Vulnerable to Phosphorus Loss in Agricultural Runoff. Journal of Environmental Quality, 1995, 24, 947-951.	2.0	135
62	The Pivotal Role of Phosphorus in a Resilient Water-Energy-Food Security Nexus. Journal of Environmental Quality, 2015, 44, 1049-1062.	2.0	125
63	The Measurement of Bioavailable Phosphorus in Agricultural Runoff. Journal of Environmental Quality, 1991, 20, 235-238.	2.0	123
64	Phosphorus losses in subsurface flow before and after manure application to intensively farmed land. Science of the Total Environment, 2001, 278, 113-125.	8.0	123
65	Development of a Phosphorus Index for Pastures Fertilized with Poultry Litter—Factors Affecting Phosphorus Runoff. Journal of Environmental Quality, 2004, 33, 2183-2191.	2.0	122
66	Survey of Water-Extractable Phosphorus in Livestock Manures. Soil Science Society of America Journal, 2005, 69, 701-708.	2.2	122
67	The New Gold Rush: Fueling Ethanol Production while Protecting Water Quality. Journal of Environmental Quality, 2008, 37, 318-324.	2.0	122
68	Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays. Science of the Total Environment, 2007, 373, 334-343.	8.0	121
69	Application of manure to no-till soils: phosphorus losses by sub-surface and surface pathways. Nutrient Cycling in Agroecosystems, 2009, 84, 215-227.	2.2	121
70	RELATIONSHIP BETWEEN SOIL TEST PHOSPHORUS AND PHOSPHORUS RELEASE TO SOLUTION. Soil Science, 2001, 166, 137-149.	0.9	119
71	Evaluating the Success of Phosphorus Management from Field to Watershed. Journal of Environmental Quality, 2009, 38, 1981-1988.	2.0	119
72	A Simplified Soil and Plant Phosphorus Model: II. Prediction of Labile, Organic, and Sorbed Phosphorus. Soil Science Society of America Journal, 1984, 48, 805-809.	2.2	110

#	Article	IF	CITATIONS
73	Estimating soil phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis, 2002, 33, 1825-1839.	1.4	110
74	Conservation practice effectiveness and adoption: unintended consequences and implications for sustainable phosphorus management. Nutrient Cycling in Agroecosystems, 2016, 104, 373-392.	2.2	106
75	Field Measurement of Denitrification: III. Rates During Irrigation Cycles. Soil Science Society of America Journal, 1982, 46, 289-296.	2.2	99
76	Sources of phosphorus exported from an agricultural watershed in Pennsylvania. Agricultural Water Management, 1999, 41, 77-89.	5.6	98
77	Availability of Residual Phosphorus in Manured Soils. Soil Science Society of America Journal, 1996, 60, 1459-1466.	2.2	97
78	Reducing Soil Phosphorus Solubility with Coal Combustion Byâ€Products. Journal of Environmental Quality, 1998, 27, 111-118.	2.0	96
79	Within-River Phosphorus Retention: Accounting for a Missing Piece in the Watershed Phosphorus Puzzle. Environmental Science & amp; Technology, 2012, 46, 13284-13292.	10.0	94
80	The Sorption of Soluble Phosphorus by Soil Material during Transport in Runoff from Cropped and Grassed Watersheds. Journal of Environmental Quality, 1981, 10, 211-215.	2.0	92
81	Effect of Soil Properties on the Kinetics of Phosphorus Desorption. Soil Science Society of America Journal, 1983, 47, 462-467.	2.2	91
82	Evaluation of Phosphorus Transport in Surface Runoff from Packed Soil Boxes. Journal of Environmental Quality, 2004, 33, 1413.	2.0	90
83	Selection of a Waterâ€Extractable Phosphorus Test for Manures and Biosolids as an Indicator of Runoff Loss Potential. Journal of Environmental Quality, 2007, 36, 1357-1367.	2.0	90
84	Environmental impact of agricultural nitrogen and phosphorus use. Journal of Agricultural and Food Chemistry, 1987, 35, 812-817.	5.2	89
85	A Model for Phosphorus Transformation and Runoff Loss for Surface-Applied Manures. Journal of Environmental Quality, 2007, 36, 324-332.	2.0	89
86	Managing agricultural phosphorus to minimize water quality impacts. Scientia Agricola, 2016, 73, 1-8.	1.2	89
87	Critical source area management of agricultural phosphorus: experiences, challenges and opportunities. Water Science and Technology, 2011, 64, 945-952.	2.5	87
88	Phosphorus Speciation and Sorptionâ€Desorption Characteristics in Heavily Manured Soils. Soil Science Society of America Journal, 2009, 73, 93-101.	2.2	86
89	The Release of Soil Phosphorus to Runoff in Relation to the Kinetics of Desorption. Journal of Environmental Quality, 1981, 10, 386-391.	2.0	85
90	The Contribution of Phosphorus Leached from Crop Canopy to Losses in Surface Runoff. Journal of Environmental Quality, 1981, 10, 160-165.	2.0	83

#	Article	IF	CITATIONS
91	Fractionation of Inorganic and Organic Phosphorus in Virgin and Cultivated Soils. Soil Science Society of America Journal, 1985, 49, 127-130.	2.2	83
92	Soil Phosphorus Forms Extracted by Soil Tests as a Function of Pedogenesis1. Soil Science Society of America Journal, 1987, 51, 362.	2.2	83
93	Relationship Between Soil Potassium Forms and Mineralogy. Soil Science Society of America Journal, 1989, 53, 1023-1028.	2.2	80
94	Prediction of Soluble Phosphorus Transport in Agricultural Runoff. Journal of Environmental Quality, 1989, 18, 313-316.	2.0	79
95	A Simple Method to Predict Dissolved Phosphorus in Runoff from Surfaceâ€Applied Manures. Journal of Environmental Quality, 2004, 33, 749-756.	2.0	78
96	Soil Phosphorus Extracted By Iron-Aluminum-Oxide-Impregnated Filter Paper. Soil Science Society of America Journal, 1991, 55, 1038-1041.	2.2	76
97	Phosphorus Indices: Why We Need to Take Stock of How We Are Doing. Journal of Environmental Quality, 2012, 41, 1711-1719.	2.0	76
98	Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 2004, 68, 914-923.	2.2	74
99	A review of the policies and implementation of practices to decrease water quality impairment by phosphorus in New Zealand, the UK, and the US. Nutrient Cycling in Agroecosystems, 2016, 104, 289-305.	2.2	73
100	USING SOIL PHOSPHORUS BEHAVIOR TO IDENTIFY ENVIRONMENTAL THRESHOLDS. Soil Science, 2000, 165, 943-950.	0.9	73
101	Effectiveness of Coal Combustion Byâ€Products in Controlling Phosphorus Export from Soils. Journal of Environmental Quality, 2000, 29, 1239-1244.	2.0	71
102	Assessing phosphorus bioavailability in agricultural soils and runoff. Fertilizer Research, 1993, 36, 259-272.	0.5	68
103	Title is missing!. Aquatic Geochemistry, 2001, 7, 255-265.	1.3	68
104	Soil Nitrogen Mineralization in the Presence of Surface and Incorporated Crop Residues. Agronomy Journal, 1990, 82, 112-116.	1.8	67
105	Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future. Scientia Agricola, 2006, 63, 194-209.	1.2	67
106	Evaluation of the Phosphorus Source Component in the Phosphorus Index for Pastures. Journal of Environmental Quality, 2004, 33, 2192-2200.	2.0	66
107	Managing agricultural phosphorus for water quality: Lessons from the USA and China. Journal of Environmental Sciences, 2014, 26, 1770-1782.	6.1	66
108	Mineralization and Leaching of Phosphorus from Soil Incubated with Surfaceâ€Applied and Incorporated Crop Residue. Journal of Environmental Quality, 1989, 18, 101-105.	2.0	64

#	Article	IF	CITATIONS
109	Modeling Soil and Plant Phosphorus Dynamics in Calcareous and Highly Weathered Soils. Soil Science Society of America Journal, 1989, 53, 153-158.	2.2	63
110	ASSESSING THE EFFICACY OF ALTERNATIVE PHOSPHORUS SORBING SOIL AMENDMENTS. Soil Science, 2002, 167, 539-547.	0.9	62
111	Phosphorus Transport in Overland Flow in Response to Position of Manure Application. Journal of Environmental Quality, 2002, 31, 217-227.	2.0	61
112	Treatment of Drainage Water with Industrial Byâ€Products to Prevent Phosphorus Loss from Tileâ€Drained Land. Journal of Environmental Quality, 2008, 37, 1575-1582.	2.0	61
113	Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils. Soil Science Society of America Journal, 2003, 67, 215-224.	2.2	59
114	The effect of antecedent moisture conditions on sediment and phosphorus loss during overland flow: Mahantango Creek catchment, Pennsylvania, USA. Hydrological Processes, 2002, 16, 3037-3050.	2.6	57
115	Hypoxia in the Northern Gulf of Mexico. Springer Series on Environmental Management, 2010, , .	0.3	57
116	Response of Stream Macroinvertebrates to Agricultural Land Cover in a Small Watershed. Journal of Freshwater Ecology, 2002, 17, 109-119.	1.2	55
117	INNOVATIVE MANAGEMENT OF AGRICULTURAL PHOSPHORUS TO PROTECT SOIL AND WATER RESOURCES. Communications in Soil Science and Plant Analysis, 2001, 32, 1071-1100.	1.4	54
118	COMPARISON OF MEASURED AND SIMULATED PHOSPHORUS LOSSES WITH INDEXED SITE VULNERABILITY. Transactions of the American Society of Agricultural Engineers, 2005, 48, 557-565.	0.9	54
119	Water Quality Impacts Associated with Wheat Culture in the Southern Plains. Journal of Environmental Quality, 1991, 20, 244-249.	2.0	53
120	A coupled model system to optimize the best management practices for nonpoint source pollution control. Journal of Cleaner Production, 2019, 220, 581-592.	9.3	53
121	Interlaboratory comparison of soil phosphorus extracted by various soil test methods. Communications in Soil Science and Plant Analysis, 2001, 32, 2325-2345.	1.4	52
122	The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science, 2003, 166, 447-458.	1.9	52
123	Uptake and Release of Phosphorus from Overland Flow in a Stream Environment. Journal of Environmental Quality, 2003, 32, 937-948.	2.0	52
124	Phosphorus Retention and Remobilization along Hydrological Pathways in Karst Terrain. Environmental Science & Technology, 2014, 48, 4860-4868.	10.0	51
125	Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities. Freshwater Science, 2019, 38, 675-691.	1.8	51
126	A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. Journal of Cleaner Production, 2019, 234, 1023-1032.	9.3	50

#	Article	IF	CITATIONS
127	Effect of Soil Slope and Rainfall Characteristics on Phosphorus in Runoff. Journal of Environmental Quality, 1982, 11, 9-13.	2.0	49
128	Celebrating the 350th Anniversary of Phosphorus Discovery: A Conundrum of Deficiency and Excess. Journal of Environmental Quality, 2018, 47, 774-777.	2.0	48
129	Bioavailable phosphorus dynamics in agricultural soils and effects on water quality. Geoderma, 1995, 67, 1-15.	5.1	47
130	PHOSPHORUS LEACHING THROUGH INTACT SOIL COLUMNS BEFORE AND AFTER POULTRY MANURE APPLICATION. Soil Science, 2005, 170, 153-166.	0.9	45
131	A review of regulations and guidelines related to winter manure application. Ambio, 2018, 47, 657-670.	5.5	45
132	Water Quality Impacts Associated with Sorghum Culture in the Southern Plains. Journal of Environmental Quality, 1991, 20, 239-244.	2.0	44
133	Production and Feeding Strategies for Phosphorus Management on Dairy Farms. Journal of Dairy Science, 2002, 85, 3142-3153.	3.4	44
134	Ion‣ink Phosphorus Extraction Methods Applied on 24 Soils from the Continental USA. Soil Science Society of America Journal, 2005, 69, 511-521.	2.2	44
135	Agricultural Chemical Discharge in Surface Water Runoff. Journal of Environmental Quality, 1993, 22, 474-480.	2.0	43
136	Indicator To Predict the Movement of Phosphorus from Soil to Subsurface Flow. Environmental Science & Technology, 2002, 36, 1505-1509.	10.0	43
137	Engineering solutions for food-energy-water systems: it is more than engineering. Journal of Environmental Studies and Sciences, 2016, 6, 172-182.	2.0	43
138	Distribution of Phosphorus Forms in Virgin and Cultivated Soils and Potential Erosion Losses. Soil Science Society of America Journal, 1983, 47, 581-586.	2.2	42
139	Modeling Phosphorus Transfer between Labile and Nonlabile Soil Pools. Soil Science Society of America Journal, 2006, 70, 736-743.	2.2	42
140	The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 2012, 13, 97-106.	1.5	42
141	An Improved Soilâ€Sampling Procedure for the Prediction of Dissolved Inorganic Phosphate Concentrations in Surface Runoff from Pasture. Journal of Environmental Quality, 1978, 7, 455-456.	2.0	41
142	Release of Nitrogen and Phosphorus from Poultry Litter. Journal of Environmental Quality, 1995, 24, 62-67.	2.0	41
143	Development of a Water-Extractable Phosphorus Test for Manure. Soil Science Society of America Journal, 2005, 69, 695-700.	2.2	41
144	Use of Laboratory Extraction Data to Predict Losses of Dissolved Inorganic Phosphate in Surface Runoff and Tile Drainage. Journal of Environmental Quality, 1977, 6, 33-36.	2.0	40

#	Article	IF	CITATIONS
145	Title is missing!. Nutrient Cycling in Agroecosystems, 2003, 67, 21-29.	2.2	40
146	Reaction in Soil of Phosphorus Released from Poultry Litter. Soil Science Society of America Journal, 1996, 60, 1583-1588.	2.2	39
147	Identifying critical sources of phosphorus export from agricultural watersheds. Nutrient Cycling in Agroecosystems, 2001, 59, 29-38.	2.2	39
148	Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA. Journal of Environmental Quality, 2017, 46, 1250-1256.	2.0	39
149	The effect of soil acidity on potentially mobile phosphorus in a grassland soil. Journal of Agricultural Science, 2002, 139, 27-36.	1.3	38
150	Differential Availability of Manure and Inorganic Sources of Phosphorus in Soil. Soil Science Society of America Journal, 1997, 61, 1503-1508.	2.2	37
151	Source-Related Transport of Phosphorus in Surface Runoff. Journal of Environmental Quality, 2006, 35, 2229-2235.	2.0	37
152	Effect of soil pH on cation and anion solubility. Communications in Soil Science and Plant Analysis, 1991, 22, 827-841.	1.4	36
153	Estimating Phosphorus in Agricultural Runoff Available to Several Algae Using Iron-Oxide Paper Strips. Journal of Environmental Quality, 1993, 22, 678-680.	2.0	36
154	Estimating Dissolved Phosphorus Concentrations in Runoff from Three Physiographic Regions of Virginia. Soil Science Society of America Journal, 2006, 70, 1967-1974.	2.2	36
155	Reducing phosphorus export from croplands with FBC fly ash and FGD gypsum. Fuel, 1999, 78, 175-178.	6.4	35
156	The Effects of Soil Carbon on Phosphorus and Sediment Loss from Soil Trays by Overland Flow. Journal of Environmental Quality, 2003, 32, 207-214.	2.0	35
157	Hydrology of Small Field Plots Used to Study Phosphorus Runoff under Simulated Rainfall. Journal of Environmental Quality, 2007, 36, 1833-1842.	2.0	35
158	Integrating Contributing Areas and Indexing Phosphorus Loss from Agricultural Watersheds. Journal of Environmental Quality, 2008, 37, 1488-1496.	2.0	35
159	Quantifying Phosphorus Retention and Release in Rivers and Watersheds Using Extended Endâ€Member Mixing Analysis (Eâ€EMMA). Journal of Environmental Quality, 2011, 40, 492-504.	2.0	35
160	Consistency of the Threshold Phosphorus Saturation Ratio across a Wide Geographic Range of Acid Soils. , 2018, 1, 1-8.		35
161	Increasing the Effectiveness and Adoption of Agricultural Phosphorus Management Strategies to Minimize Water Quality Impairment. Journal of Environmental Quality, 2019, 48, 1204-1217.	2.0	34
162	Prediction of Waterâ€Extractable Phosphorus Content of Soil Following a Phosphorus Addition. Journal of Environmental Quality, 1982, 11, 166-170.	2.0	33

#	Article	IF	CITATIONS
163	Disposition of Fertilizer Phosphorus Applied to Winter Wheat. Soil Science Society of America Journal, 1986, 50, 953-958.	2.2	33
164	Effect of Extractable Soil Surface Phosphorus on Runoff Water Quality. Transactions of the American Society of Agricultural Engineers, 1993, 36, 1079-1085.	0.9	33
165	Prediction of Phosphorus Losses in Runoff from Southern Plains Watersheds. Journal of Environmental Quality, 1982, 11, 247-251.	2.0	32
166	Distant Views and Local Realities: The Limits of Global Assessments to Restore the Fragmented Phosphorus Cycle. Agricultural and Environmental Letters, 2016, 1, 160024.	1.2	32
167	Coupling High-Frequency Stream Metabolism and Nutrient Monitoring to Explore Biogeochemical Controls on Downstream Nitrate Delivery. Environmental Science & Technology, 2018, 52, 13708-13717.	10.0	32
168	Multi-stakeholders' preference for best management practices based on environmental awareness. Journal of Cleaner Production, 2019, 236, 117682.	9.3	31
169	REACTION OF FERTILIZER POTASSIUM IN SOILS OF DIFFERING MINERALOGY. Soil Science, 1990, 149, 44-51.	0.9	30
170	Assessment of best management practices to minimise the runoff of manureâ€borne phosphorus in the United States. New Zealand Journal of Agricultural Research, 2004, 47, 461-477.	1.6	30
171	Estimating Source Coefficients for Phosphorus Site Indices. Journal of Environmental Quality, 2006, 35, 2195-2201.	2.0	30
172	Change Point Analysis of Phosphorus Trends in the Illinois River (Oklahoma) Demonstrates the Effects of Watershed Management. Journal of Environmental Quality, 2011, 40, 1249-1256.	2.0	30
173	Guiding phosphorus stewardship for multiple ecosystem services. Ecosystem Health and Sustainability, 2016, 2, .	3.1	30
174	Nutrient Runoff Losses as Predicted by Annual and Monthly Soil Sampling. Journal of Environmental Quality, 1985, 14, 354-360.	2.0	29
175	THE USE OF ISOTOPIC EXCHANGE KINETICS TO ASSESS PHOSPHORUS AVAILABILITY IN OVERLAND FLOW AND SUBSURFACE DRAINAGE WATERS. Soil Science, 2001, 166, 365-373.	0.9	29
176	Runoff transport of faecal coliforms and phosphorus released from manure in grass buffer conditions. Letters in Applied Microbiology, 2005, 41, 230-234.	2.2	29
177	Agricultural phosphorus and water quality: sources, transport and management. Agricultural and Food Science, 1998, 7, 297-314.	0.9	29
178	Prediction of Bioavailable Phosphorus Loss in Agricultural Runoff. Journal of Environmental Quality, 1993, 22, 32-37.	2.0	27
179	Organic amendments as a source of phosphorus: agronomic and environmental impact of different animal manures applied to an acid soil. Archives of Agronomy and Soil Science, 2018, 64, 257-271.	2.6	26
180	Using a Phosphorus Loss Model to Evaluate and Improve Phosphorus Indices. Journal of Environmental Quality, 2012, 41, 1758-1766.	2.0	25

#	Article	IF	CITATIONS
181	Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model. Agricultural Water Management, 2018, 202, 202-219.	5.6	25
182	Environmental Management of Soil Phosphorus. Soil Science Society of America Journal, 2001, 65, 1516-1522.	2.2	24
183	The Effect of Storm Interval on the Transport of Soluble Phosphorus in Runoff. Journal of Environmental Quality, 1980, 9, 575-578.	2.0	23
184	Changes in Waterâ€extractability of Soil Inorganic Phosphate Induced by Sodium Saturation. Soil Science Society of America Journal, 1988, 52, 637-640.	2.2	22
185	INTEGRATING PHOSPHORUS AND NITROGEN DECISION MANAGEMENT AT WATERSHED SCALES. Journal of the American Water Resources Association, 2002, 38, 479-491.	2.4	22
186	Southern Phosphorus Indices, Water Quality Data, and Modeling (APEX, APLE, and TBET) Results: A Comparison. Journal of Environmental Quality, 2017, 46, 1296-1305.	2.0	21
187	Availability of residual phosphorus in high phosphorus soils. Communications in Soil Science and Plant Analysis, 2002, 33, 1235-1246.	1.4	20
188	Shortâ€ŧerm Forecasting Tools for Agricultural Nutrient Management. Journal of Environmental Quality, 2017, 46, 1257-1269.	2.0	20
189	Surface Runoff along Two Agricultural Hillslopes with Contrasting Soils. Soil Science Society of America Journal, 2004, 68, 914.	2.2	20
190	Water Quality Characteristics Associated with Southern Plains Grasslands. Journal of Environmental Quality, 1992, 21, 595-601.	2.0	19
191	Nitrogen Availability from Surfaceâ€Applied and Soilâ€Incorporated Crop Residues. Agronomy Journal, 1993, 85, 776-778.	1.8	19
192	Minimizing Agricultural Nonpointâ€Source Impacts: A Symposium Overview. Journal of Environmental Quality, 1994, 23, 1-3.	2.0	19
193	A phosphorus Index for Norway. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2005, 55, 205-213.	0.6	19
194	Modeling a Small, Northeastern Watershed with Detailed, Field-Level Data. Transactions of the ASABE, 2008, 51, 471-483.	1.1	19
195	The Promise, Practice, and State of Planning Tools to Assess Site Vulnerability to Runoff Phosphorus Loss. Journal of Environmental Quality, 2017, 46, 1243-1249.	2.0	19
196	Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States. Journal of Environmental Quality, 2017, 46, 1357-1364.	2.0	19
197	Effect of Environmental Stress on the Growth and Amounts and Forms of Phosphorus in Plants 1. Agronomy Journal, 1982, 74, 19-22.	1.8	18
198	The Kinetics of Soil Potassium Desorption. Soil Science Society of America Journal, 1987, 51, 912-917.	2.2	18

#	Article	IF	CITATIONS
199	Impact of Dredging on Phosphorus Transport in Agricultural Drainage Ditches of the Atlantic Coastal Plain ¹ . Journal of the American Water Resources Association, 2008, 44, 1500-1511.	2.4	18
200	Managing Agricultural Phosphorus for Environmental Protection. Agronomy, 2015, , 1021-1068.	0.2	18
201	Uptake and Release of Phosphorus from Overland Flow in a Stream Environment. Journal of Environmental Quality, 2003, 32, 937.	2.0	18
202	Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils. Soil Science Society of America Journal, 2003, 67, 215.	2.2	18
203	PHOSPHORUS CRITERIA AND WATER QUALITY MANAGEMENT FOR AGRICULTURAL WATERSHEDS. Lake and Reservoir Management, 1986, 2, 177-182.	1.3	17
204	Cumulative Effects of Land Management on Soil and Water Resources: An Overview. Journal of Environmental Quality, 1991, 20, 1-3.	2.0	17
205	Effect of Mixing Soil Aggregates on the Phosphorus Concentration in Surface Waters. Journal of Environmental Quality, 2002, 31, 1294-1299.	2.0	17
206	Phosphorus in pasture plants: potential implications for phosphorus loss in surface runoff. Plant and Soil, 2011, 345, 23-35.	3.7	17
207	Assessing environmental sustainability of agricultural systems by simulation of nitrogen and phosphorus loss in runoff. European Journal of Agronomy, 1995, 4, 453-464.	4.1	16
208	A Simple Method to Predict Dissolved Phosphorus in Runoff from Surface-Applied Manures. Journal of Environmental Quality, 2004, 33, 749.	2.0	16
209	Bromide and Phosphate in Runoff Water from Shaped and Cloddy Soil Surfaces. Soil Science Society of America Journal, 1983, 47, 746-748.	2.2	15
210	Interlaboratory Comparison of Iron Oxide-Impregnated Paper to Estimate Bioavailable Phosphorus. Journal of Environmental Quality, 1994, 23, 14-18.	2.0	15
211	Solids Transport and Erodibility of Poultry Litter Surface-applied to Fescue. Transactions of the American Society of Agricultural Engineers, 1994, 37, 771-776.	0.9	15
212	Relative Availabilities of Native, Residual, and Fertilizer Phosphorus to Winter Wheat. Soil Science Society of America Journal, 1987, 51, 1531-1535.	2.2	14
213	Comparing an Annual and a Daily Time‣tep Model for Predicting Field‣cale Phosphorus Loss. Journal of Environmental Quality, 2017, 46, 1314-1322.	2.0	14
214	Phosphorus Transport in Overland Flow in Response to Position of Manure Application. Journal of Environmental Quality, 2002, 31, 217.	2.0	14
215	Phosphorus Dynamics in Agricultural Runoff and Reservoirs in Oklahoma. Lake and Reservoir Management, 1989, 5, 75-81.	1.3	13
216	Organic Phosphorus Effects on Sink Characteristics of Iron-Oxide-Impregnated Filter Paper. Soil Science Society of America Journal, 1994, 58, 758-761.	2.2	13

#	Article	IF	CITATIONS
217	Developing and testing a best management practices tool for estimating effectiveness of nonpoint source pollution control. Environmental Earth Sciences, 2015, 74, 3645-3659.	2.7	13
218	Soil phosphorus dynamics following land application of unsaturated and partially saturated red mud and water treatment residuals. Journal of Environmental Management, 2019, 248, 109296.	7.8	13
219	Future Phosphorus: Advancing New 2D Phosphorus Allotropes and Growing a Sustainable Bioeconomy. Journal of Environmental Quality, 2019, 48, 1145-1155.	2.0	13
220	<i>Phosphorus mirabilis</i> : Illuminating the Past and Future of Phosphorus Stewardship. Journal of Environmental Quality, 2019, 48, 1127-1132.	2.0	13
221	Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution. PLoS ONE, 2015, 10, e0130607.	2.5	13
222	Phosphorus Source and Soil Properties Effects on Phosphorus Availability. Soil Science, 2011, 176, 502-507.	0.9	12
223	Land Application of Manure Can Influence Earthworm Activity and Soil Phosphorus Distribution. Communications in Soil Science and Plant Analysis, 2011, 42, 194-207.	1.4	12
224	Coarse Fragments Affect Soil Properties in a Mantled-Karst Landscape of the Ozark Highlands. Soil Science, 2014, 179, 42-50.	0.9	12
225	Transport of phosphorus in surface runoff as influenced by liquid and solid fertilizer phosphate addition. Water, Air, and Soil Pollution, 1983, 19, 321-326.	2.4	12
226	Kinetics of Sulfate Desorption from Soil. Soil Science Society of America Journal, 1990, 54, 1571-1575.	2.2	11
227	Five-Year Change in Soil Profile Chemical Properties as Affected by Broiler Litter Application Rate. Soil Science, 2009, 174, 531-542.	0.9	11
228	Mining of soil legacy phosphorus without jeopardizing cropÂyield. , 2020, 3, e20056.		11
229	Effect of aerial topdressing with superphosphate on the loss of phosphate from a pasture catchment. New Zealand Journal of Agricultural Research, 1979, 22, 273-277.	1.6	10
230	Relationship between minimum exchangeable potassium and soil taxonomy. Communications in Soil Science and Plant Analysis, 1987, 18, 601-614.	1.4	10
231	Nonpoint Source Pollution Impacts of Agricultural Land Use. Lake and Reservoir Management, 1988, 4, 41-49.	1.3	10
232	Developing an Environmental Manure Test for the Phosphorus Index. Communications in Soil Science and Plant Analysis, 2006, 37, 2137-2155.	1.4	10
233	Effectiveness of Agricultural Best Management Practices in Reducing Phosphorous Loading to Lake Champlain. , 2004, , 39-52.		10
234	Amounts and relative significance of runoff types in the transport of nitrogen into a stream draining an agricultural watershed. Water, Air, and Soil Pollution, 1981, 15, 299.	2.4	9

#	Article	IF	CITATIONS
235	Relationships among soil p test values for soils of differing pedogenesis. Communications in Soil Science and Plant Analysis, 1984, 15, 985-995.	1.4	9
236	LOW-INTENSITY SPRINKLER FOR EVALUATING PHOSPHORUS TRANSPORT FROM DIFFERENT LANDSCAPE POSITIONS. Applied Engineering in Agriculture, 2004, 20, 599-604.	0.7	9
237	Impact of Chemical Amendment of Dairy Cattle Slurry on Soil Phosphorus Dynamics Following Application to Five Soils. Communications in Soil Science and Plant Analysis, 2014, 45, 2215-2233.	1.4	9
238	Organic Phosphorus Can Make an Important Contribution to Phosphorus Loss from Riparian Buffers. Agricultural and Environmental Letters, 2018, 3, 180002.	1.2	9
239	A Sensitivity Analysis of Impacts of Conservation Practices on Water Quality in L'Anguille River Watershed, Arkansas. Water (Switzerland), 2018, 10, 443.	2.7	9
240	Phosphorus Mobility in the Landscape. Agronomy, 0, , 941-979.	0.2	9
241	Relationship between water soluble and exchangeable soil cations for estimating plant uptake and leaching potential. Communications in Soil Science and Plant Analysis, 1988, 19, 739-753.	1.4	8
242	Effects of Long-Term Poultry Litter Application on Phosphorus Soil Chemistry and Runoff Water Quality. Journal of Environmental Quality, 2013, 42, 1829-1837.	2.0	8
243	Changes in some soil phosphorus availability parameters as induced by phosphorus addition and soil sorption properties. Communications in Soil Science and Plant Analysis, 1997, 28, 1565-1578.	1.4	7
244	Nitrogen Fate in Drainage Ditches of the Coastal Plain after Dredging. Journal of Environmental Quality, 2009, 38, 2449-2457.	2.0	7
245	NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN. , 1998, 8, 559.		7
246	The Return of the Phosphorus Paradigm: Agricultural Phosphorus and Eutrophication. Agronomy, 0, , 909-939.	0.2	7
247	Environmental Impacts of Dryland Residue Management Systems in the Southern High Plains. Journal of Environmental Quality, 1995, 24, 453-460.	2.0	7
248	Application of Simplified Phosphorus Transport Models to Pasture Fields in Northwest Arkansas. Transactions of the American Society of Agricultural Engineers, 1996, 39, 489-496.	0.9	6
249	Changes in distribution of inorganic soil phosphorus forms with phosphate desorption by iron oxideâ€impregnated paper strips. Communications in Soil Science and Plant Analysis, 1998, 29, 625-634.	1.4	6
250	Safeguarding soil and water quality. Communications in Soil Science and Plant Analysis, 2000, 31, 1717-1742.	1.4	6
251	Arkansas Discovery Farms: documenting water quality benefits of on-farm conservation management and empowering farmers. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 186-198.	0.6	6
252	Phosphorus mobilization from sugarcane soils in the tropical environment of Mauritius under simulated rainfall. Nutrient Cycling in Agroecosystems, 2015, 103, 29-43.	2.2	6

#	Article	IF	CITATIONS
253	Assessing the Risk and Magnitude of Agricultural Nonpoint Source Phosphorus Pollution. Agronomy, 0, , 981-1020.	0.2	6
254	A simple method to predict dissolved phosphorus in runoff from surface-applied manures. Journal of Environmental Quality, 2004, 33, 749-56.	2.0	6
255	Release of soil phosphate by sequential extractions as a function of soil properties and added phosphorus. Communications in Soil Science and Plant Analysis, 1996, 27, 2147-2157.	1.4	5
256	Phosphorus Uptake and Release from Submerged Sediments in a Simulated Stream Channel Inundated with a Poultry Litter Source. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	5
257	BMP Optimization to Improve the Economic Viability of Farms in the Upper Watershed of Miyun Reservoir, Beijing, China. Water (Switzerland), 2017, 9, 633.	2.7	5
258	Nutrient Concentrations in Big Creek Correlate to Regional Watershed Land Use. Agricultural and Environmental Letters, 2017, 2, 170027.	1.2	5
259	Transport and Prediction of Sulfate in Agricultural Runoff. Journal of Environmental Quality, 1991, 20, 415-420.	2.0	5
260	Phosphorus transport in overland flow in response to position of manure application. Journal of Environmental Quality, 2002, 31, 217-27.	2.0	5
261	Broiler Litter Composition as Affected by Water Extractant, Dilution Ratio, and Extraction Time. Communications in Soil Science and Plant Analysis, 2010, 41, 2340-2357.	1.4	4
262	Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry-Pasture Watersheds1. Journal of the American Water Resources Association, 2011, 47, 367-385.	2.4	4
263	Effect of Coal Combustion By-products on Phosphorus Runoff from a Coastal Plain Soil. Communications in Soil Science and Plant Analysis, 2011, 42, 778-789.	1.4	4
264	Phosphorus and nitrogen losses from poultry litter stacks and leaching through soils. Nutrient Cycling in Agroecosystems, 2015, 103, 101-114.	2.2	4
265	The Drive to Improve Water Quality via Conservation Adoption: Who's at the Wheel and Where Are We Headed?. Agricultural and Environmental Letters, 2018, 3, 180041.	1.2	4
266	Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Modelâ€Derived Indicators. Journal of Environmental Quality, 2018, 47, 191-202.	2.0	4
267	Fate and transport of phosphorusâ€containing landâ€applied swine slurry in a karstÂwatershed. , 2020, 3, e20096.		4
268	Changes in soluble and equilibrium phosphate concentration in selected soils from Italy. Communications in Soil Science and Plant Analysis, 1998, 29, 2429-2440.	1.4	3
269	Development of PLEAD: A Database Containing Eventâ€based Runoff Phosphorus Loadings from Agricultural Fields. Journal of Environmental Quality, 2019, 48, 510-517.	2.0	3
270	Phosphorus runoff risk assessment in karstic regions of the United States. Agricultural and Environmental Letters, 2020, 5, e20001.	1.2	3

#	Article	IF	CITATIONS
271	Response to "Comments on â€~Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure'â€, Soil Science Society of America Journal, 2005, 69, 1355-1355.	2.2	2
272	Effluent Storage and Biomat Occurrence among Septic System Absorption Field Architectures in a Typic Fragiudult. Journal of Environmental Quality, 2013, 42, 1213-1225.	2.0	2
273	Agriculture, Nutrient Management and Water Quality. , 2018, , .		2
274	Estimating dissolved phosphorus losses from legacy sources in pastures: The limits of soil tests and smallâ€scale rainfall simulators. Journal of Environmental Quality, 2021, 50, 1042-1062.	2.0	2
275	Analysis of potentially mobile phosphorus in arable soils using solid state nuclear magnetic resonance. Journal of Environmental Quality, 2002, 31, 450-6.	2.0	2
276	Effect of phosphorus fertilizer on A values for soils cropped with winter wheat. Plant and Soil, 1987, 102, 201-205.	3.7	1
277	Water Quality Impacts Associated With Peanut Culture in the Southern Plains1. Peanut Science, 1994, 21, 60-64.	0.1	1
278	A Long and Winding Road. CSA News, 2020, 65, 40-42.	0.0	1
279	Can soil phosphorus sorption saturation estimate future potential legacy phosphorusÂsources?. , 2020, 3, e20122.		1
280	Water quality adjacent to swine slurry holding ponds associated with a concentrated animal feeding operation. , 2022, 5, .		1
281	RAINFALL AND WATER QUALITY IN THE SOUTHERN PLAINS. Lake and Reservoir Management, 1987, 3, 379-384.	1.3	0
282	Environmental Soil Chemistry, Second Edition. Journal of Environmental Quality, 2003, 32, 2444-2444.	2.0	0
283	Soil and Water Chemistry. Journal of Environmental Quality, 2004, 33, 1583.	2.0	0
284	Support your Colleagues and your Journals by Reviewing Manuscripts. Crop Science, 2015, 55, vi-vi.	1.8	0
285	Getting Involved. CSA News, 2017, 62, 22-22.	0.0	0
286	Reflections on 2017. CSA News, 2017, 62, 38-42.	0.0	0
287	Expanding our Soils Tent. CSA News, 2017, 62, 21-21.	0.0	0
288	Priorities for 2017. CSA News, 2017, 62, 18-19.	0.0	0

#	Article	IF	CITATIONS
289	It's Your Meeting. CSA News, 2017, 62, 17-17.	0.0	0
290	Nutrient Removal Structures Using Locally-Sourced Iron and Aluminum By-Products Reduce Nutrient Runoff from Broiler Production Facilities. Journal of Environmental Protection, 2020, 11, 332-343.	0.7	0