
Jerome Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predator and prey views of spider camouflage. Nature, 2002, 415, 133-133.	27.8	210
2	Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2311-2319.	2.6	174
3	DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH. Ecology, 2003, 84, 1207-1214.	3.2	130
4	Mothers reduce egg provisioning with age. Ecology Letters, 2003, 6, 273-277.	6.4	123
5	LIFETIME NUTRIENT DYNAMICS REVEAL SIMULTANEOUS CAPITAL AND INCOME BREEDING IN A PARASITOID. Ecology, 2005, 86, 545-554.	3.2	119
6	Social Learning in Noncolonial Insects?. Current Biology, 2005, 15, 1931-1935.	3.9	111
7	Vibratory stimuli in host location by parasitic wasps. Journal of Insect Physiology, 1999, 45, 967-971.	2.0	106
8	Incorporating physiology into parasitoid behavioral ecology: the allocation of nutritional resources. Researches on Population Ecology, 1999, 41, 39-45.	0.9	105
9	Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behavioral Ecology, 2005, 16, 25-29.	2.2	100
10	The physiology of host feeding in parasitic wasps: implications for survival. Functional Ecology, 2002, 16, 750-757.	3.6	98
11	Foraging behaviour of a leafminer parasitoid in the field. Ecological Entomology, 1989, 14, 257-265.	2.2	95
12	Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services, 2019, 35, 109-115.	5.4	95
13	Lifetime allocation of juvenile and adult nutritional resources to egg production in a holometabolous insect. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1231-1237.	2.6	89
14	Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biology Letters, 2007, 3, 340-343.	2.3	88
15	Energy dynamics in a parasitoid foraging in the wild. Journal of Animal Ecology, 2003, 72, 691-697.	2.8	87
16	Spider webs designed for rare but life-saving catches. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1587-1592.	2.6	87
17	The multiple disguises of spiders: web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 471-480.	4.0	86
18	Warming tolerance across insect ontogeny: influence of joint shifts in microclimates and thermal limits. Ecology, 2015, 96, 986-997.	3.2	86

#	Article	IF	CITATIONS
19	The functional morphology of color changing in a spider: development of ommochrome pigment granules. Journal of Experimental Biology, 2008, 211, 780-789.	1.7	82
20	Variability in Sensory Ecology: Expanding the Bridge Between Physiology and Evolutionary Biology. Quarterly Review of Biology, 2009, 84, 51-74.	0.1	80
21	Background colour matching by a crab spider in the field: a community sensory ecology perspective. Journal of Experimental Biology, 2010, 213, 1425-1435.	1.7	79
22	Lipogenesis in an adult parasitic wasp. Journal of Insect Physiology, 2003, 49, 141-147.	2.0	77
23	Physical Ecology of Fluid Flow Sensing in Arthropods. Annual Review of Entomology, 2010, 55, 505-520.	11.8	76
24	Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. Journal of Animal Ecology, 2000, 69, 185-193.	2.8	75
25	Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods. Functional Ecology, 2014, 28, 1449-1458.	3.6	75
26	Spider's attack versus cricket's escape: velocity modes determine success. Animal Behaviour, 2006, 72, 603-610.	1.9	73
27	Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5588-5596.	7.1	73
28	MULTITROPHIC BIOPHYSICAL BUDGETS: THERMAL ECOLOGY OF AN INTIMATE HERBIVORE INSECT–PLANT INTERACTION. Ecological Monographs, 2006, 76, 175-194.	5.4	72
29	Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. Journal of Animal Ecology, 2007, 76, 424-438.	2.8	72
30	Leaf-Miners Co-opt Microorganisms to Enhance their Nutritional Environment. Journal of Chemical Ecology, 2013, 39, 969-977.	1.8	71
31	Leaf Vibrations and Air Movements in a Leafminer–Parasitoid System. Biological Control, 1998, 11, 147-153.	3.0	67
32	Ommochromes in invertebrates: biochemistry and cell biology. Biological Reviews, 2019, 94, 156-183.	10.4	66
33	Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiological Entomology, 2004, 29, 436-442.	1.5	64
34	Hair canopy of cricket sensory system tuned to predator signals. Journal of Theoretical Biology, 2006, 241, 459-466.	1.7	64
35	The role of leaf structure in vibration propagation. Journal of the Acoustical Society of America, 2000, 108, 2412-2418.	1.1	63
36	Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors. Journal of the Royal Society Interface, 2010, 7, 1487-1495.	3.4	59

#	Article	IF	CITATIONS
37	Temporal coincidence of environmental stress events modulates predation rates. Ecology Letters, 2012, 15, 680-688.	6.4	59
38	Leaf miner-induced changes in leaf transmittance cause variations in insect respiration rates. Journal of Insect Physiology, 2006, 52, 194-201.	2.0	57
39	Vibration–mediated interactions in a host–parasitoid system. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 261-266.	2.6	56
40	Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages. Journal of Experimental Biology, 2006, 209, 4398-4408.	1.7	55
41	Host location by a parasitoid using leafminer vibrations: characterizing the vibrational signals produced by the leafmining host. Physiological Entomology, 1994, 19, 349-359.	1.5	51
42	Ineffective crypsis in a crab spider: a prey community perspective. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 739-746.	2.6	51
43	A dynamic energy budget for the whole lifeâ€cycle of holometabolous insects. Ecological Monographs, 2015, 85, 353-371.	5.4	50
44	Escape performance decreases during ontogeny in wild crickets. Journal of Experimental Biology, 2007, 210, 3165-3170.	1.7	49
45	Rate of nutrient allocation to egg production in a parasitic wasp. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1169-1174.	2.6	46
46	Variation in morphology and performance of predator-sensing system in wild cricket populations. Journal of Experimental Biology, 2005, 208, 461-468.	1.7	46
47	Efficiency of antlion trap construction. Journal of Experimental Biology, 2006, 209, 3510-3515.	1.7	44
48	Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1087-1092.	2.6	43
49	Orientation towards prey in antlions: efficient use of wave propagation in sand. Journal of Experimental Biology, 2007, 210, 3337-3343.	1.7	43
50	The Aerodynamic Signature of Running Spiders. PLoS ONE, 2008, 3, e2116.	2.5	43
51	The management of fluid and wave resistances by whirligig beetles. Journal of the Royal Society Interface, 2010, 7, 343-352.	3.4	42
52	Geometrical Games between a Host and a Parasitoid. American Naturalist, 2000, 156, 257-265.	2.1	40
53	Ontogeny of air-motion sensing in cricket. Journal of Experimental Biology, 2006, 209, 4363-4370.	1.7	40
54	Directional cues in <i>Drosophila melanogaster</i> audition: structure of acoustic flow and inter-antennal velocity differences. Journal of Experimental Biology, 2012, 215, 2405-2413.	1.7	39

#	Article	lF	CITATIONS
55	Textbook cricket goes to the field: the ecological scene of the neuroethological play. Journal of Experimental Biology, 2006, 209, 393-398.	1.7	38
56	Control of invasive hosts by generalist parasitoids. Mathematical Medicine and Biology, 2008, 25, 1-20.	1.2	37
57	Substrate vibrations elicit defensive behaviour in leafminer pupae. Journal of Insect Physiology, 1997, 43, 945-952.	2.0	36
58	Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. Journal of the Royal Society Interface, 2012, 9, 1131-1143.	3.4	36
59	Matching host reactions to parasitoid wasp vibrations. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2403-2408.	2.6	35
60	Herbivory mitigation through increased water-use efficiency in a leaf-mining moth?apple tree relationship. Plant, Cell and Environment, 2006, 29, 2238-2247.	5.7	35
61	Turnover of pigment granules: Cyclic catabolism and anabolism of ommochromes within epidermal cells. Tissue and Cell, 2009, 41, 421-429.	2.2	35
62	Mechano- and Chemoreceptors and Their Possible Role in Host Location Behavior of Sympiesis sericeicornis (Hymenoptera: Eulophidae). Annals of the Entomological Society of America, 1997, 90, 208-219.	2.5	34
63	Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key. Journal of Insect Physiology, 2016, 84, 137-153.	2.0	34
64	Stochasticity and controllability of nutrient sources in foraging: host-feeding and egg resorption in parasitoids. Ecological Monographs, 2009, 79, 465-483.	5.4	33
65	Seasonal selection and resource dynamics in a seasonally polyphenic butterfly. Journal of Evolutionary Biology, 2013, 26, 175-185.	1.7	31
66	Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for massively parallel local plasticity mechanisms. APL Materials, 2019, 7, .	5.1	31
67	Statistical analysis of functional response experiments. Biocontrol Science and Technology, 1994, 4, 133-145.	1.3	30
68	Ambush frequency should increase over time during optimal predator search for prey. Journal of the Royal Society Interface, 2011, 8, 1665-1672.	3.4	30
69	Mitigation of egg limitation in parasitoids: immediate hormonal response and enhanced oogenesis after host use. Ecology, 2009, 90, 537-545.	3.2	28
70	Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces. Journal of Experimental Biology, 2013, 216, 3551-63.	1.7	28
71	A Probabilistic Model for the Functional Response of a Parasitoid at the Behavioural Time-Scale. Journal of Animal Ecology, 1993, 62, 194.	2.8	26
72	Parasitoid vibrations as potential releasing stimulus of evasive behaviour in a leafminer. Physiological Entomology, 1996, 21, 33-43.	1.5	25

#	Article	IF	CITATIONS
73	Cricket Inspired Flow-Sensor Arrays. , 2007, , .		25
74	Characterizing the pigment composition of a variable warning signal of <i>Parasemia plantaginis</i> larvae. Functional Ecology, 2010, 24, 759-766.	3.6	25
75	Parasitoid foraging decisions mediated by artificial vibrations. Animal Behaviour, 2004, 67, 567-571.	1.9	24
76	Diet choice of a predator in the wild: overabundance of prey and missed opportunities along the prey capture sequence. Ecosphere, 2011, 2, art133.	2.2	24
77	Canopy architecture and multitrophic interactions. , 2002, , 174-196.		23
78	Parasitoid behaviour: predicting field from laboratory. Ecological Entomology, 2004, 29, 657-665.	2.2	22
79	An Individual-Based Model of Trichogramma Foraging Behaviour: Parameter Estimation for Single Females. Journal of Applied Ecology, 1996, 33, 425.	4.0	21
80	Environmental and hormonal factors controlling reversible colour change in crab spiders. Journal of Experimental Biology, 2013, 216, 3886-3895.	1.7	21
81	Analysis of searching movements of a leafminer parasitoid in a structured environment. Physiological Entomology, 1988, 13, 373-380.	1.5	20
82	Relative contributions of organ shape and receptor arrangement to the design of cricket's cercal system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 653-663.	1.6	20
83	Danger detection and escape behaviour in wood crickets. Journal of Insect Physiology, 2011, 57, 865-871.	2.0	20
84	Responses of cricket cercal interneurons to realistic naturalistic stimuli in the field. Journal of Experimental Biology, 2012, 215, 2382-2389.	1.7	20
85	Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Global Change Biology, 2016, 22, 3196-3205.	9.5	20
86	Maternal age affects offspring nutrient dynamics. Journal of Insect Physiology, 2017, 101, 123-131.	2.0	20
87	Neuromorphic object localization using resistive memories and ultrasonic transducers. Nature Communications, 2022, 13, .	12.8	20
88	The geometry of search movements of insects in plant canopies. Behavioral Ecology, 1997, 8, 37-45.	2.2	19
89	Succession of hide–seek and pursuit–evasion at heterogeneous locations. Journal of the Royal Society Interface, 2014, 11, 20140062.	3.4	19
90	Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches. Oikos, 2005, 108, 194-201.	2.7	18

#	Article	IF	CITATIONS
91	Connectivity counts: disentangling effects of vegetation structure elements on the searching movement of a parasitoid. Ecological Entomology, 2010, 35, 446-455.	2.2	17
92	Spectral sensitivity of a colour changing spider. Journal of Insect Physiology, 2011, 57, 508-513.	2.0	17
93	Capillary-based static self-assembly in higher organisms. Journal of the Royal Society Interface, 2011, 8, 1357-1366.	3.4	17
94	Temperature effects on ballistic prey capture by a dragonfly larva. Ecology and Evolution, 2018, 8, 4303-4311.	1.9	17
95	Insect-inspired neuromorphic computing. Current Opinion in Insect Science, 2018, 30, 59-66.	4.4	17
96	The Dynamics of Pheromone Gland Synthesis and Release: a Paradigm Shift for Understanding Sex Pheromone Quantity in Female Moths. Journal of Chemical Ecology, 2018, 44, 525-533.	1.8	17
97	Predator-Prey Pursuit-Evasion Games in Structurally Complex Environments. Integrative and Comparative Biology, 2013, 53, 767-779.	2.0	16
98	Performance assessment of bio-inspired systems: flow sensing MEMS hairs. Bioinspiration and Biomimetics, 2015, 10, 016001.	2.9	16
99	Optimal range of prey size for antlions. Ecological Entomology, 2015, 40, 776-781.	2.2	16
100	The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks. Journal of the Royal Society Interface, 2017, 14, 20170324.	3.4	15
101	Pressure-Dependent Friction on Granular Slopes Close to Avalanche. Physical Review Letters, 2017, 119, 058003.	7.8	15
102	Locomotion of Ants Walking up Slippery Slopes of Granular Materials. Integrative Organismal Biology, 2019, 1, obz020.	1.8	15
103	Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochemistry and Molecular Biology, 2020, 124, 103403.	2.7	15
104	Visual fields and eye morphology support color vision in a color-changing crab-spider. Arthropod Structure and Development, 2012, 41, 155-163.	1.4	14
105	A quantitative framework for ovarian dynamics. Functional Ecology, 2012, 26, 1399-1408.	3.6	13
106	Increasing metabolic rate despite declining body weight in an adult parasitoid wasp. Journal of Insect Physiology, 2015, 79, 27-35.	2.0	13
107	The coupon collector urn model with unequal probabilities in ecology and evolution. Journal of the Royal Society Interface, 2017, 14, 20160643.	3.4	13
108	Unsteady wave pattern generation by waterÂstriders. Journal of Fluid Mechanics, 2018, 848, 370-387.	3.4	13

#	Article	IF	CITATIONS
109	Predator-induced flow disturbances alert prey, from the onset of an attack. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141083.	2.6	12
110	Regulation of reproductive processes with dynamic energy budgets. Functional Ecology, 2019, 33, 819-832.	3.6	12
111	Multidimensional Host Distribution and Nonrandom Parasitism: A Case Study and a Stochastic Model. Ecology, 1990, 71, 1893-1903.	3.2	11
112	Daily foraging cycles create overlapping timeâ€scales in functional responses. Oikos, 2012, 121, 1966-1976.	2.7	11
113	The fate of methyl salicylate in the environment and its role as signal in multitrophic interactions. Science of the Total Environment, 2020, 749, 141406.	8.0	11
114	Haematophagy is costly: respiratory patterns and metabolism during feeding in <i>Rhodnius prolixus</i> . Journal of Experimental Biology, 2016, 219, 1820-6.	1.7	10
115	Bistability induced by generalist natural enemies can reverse pest invasions. Journal of Mathematical Biology, 2017, 75, 543-575.	1.9	10
116	Hybrid CMOS-RRAM Neurons with Intrinsic Plasticity. , 2019, , .		10
117	Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
118	3-D maps of tree canopy geometries at leaf scale. Ecology, 2009, 90, 283-283.	3.2	9
119	Coupled measurements of interface topography and three-dimensional velocity field of a free surface flow. Experiments in Fluids, 2021, 62, 1.	2.4	9
120	Matching host reactions to parasitoid wasp vibrations. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2403-2408.	2.6	9
121	The terminal abdominal ganglion of the wood cricket <i>Nemobius sylvestris</i> . Journal of Morphology, 2008, 269, 1539-1551.	1.2	8
122	Prey should hide more randomly when a predator attacks more persistently. Journal of the Royal Society Interface, 2015, 12, 20150861.	3.4	8
123	Relative roles of resource stimulus and vegetation architecture on the paths of flies foraging for fruit. Oikos, 2015, 124, 337-346.	2.7	8
124	Sex pheromone in the moth Heliothis virescens is produced as a mixture of two pools: de novo and via precursor storage in glycerolipids. Insect Biochemistry and Molecular Biology, 2017, 87, 26-34.	2.7	8
125	Additive manufacturing: state of the art and potential for insect science. Current Opinion in Insect Science, 2018, 30, 79-85.	4.4	7
126	Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks. Lecture Notes in Computer Science, 2018, , 115-128.	1.3	7

#	Article	IF	CITATIONS
127	The morphology and fine structure of the giant interneurons of the wood cricket Nemobius sylvestris. Tissue and Cell, 2011, 43, 52-65.	2.2	6
128	Insect-Inspired Distributed Flow-Sensing: Fluid-Mediated CouplingÂBetween Sensors. Springer Series in Materials Science, 2019, , 355-392.	0.6	6
129	Calling Behavior and Sex Pheromone Release and Storage in the Moth Chloridea virescens. Journal of Chemical Ecology, 2020, 46, 10-20.	1.8	6
130	Insect pectinate antennae maximize odor capture efficiency at intermediate flight speeds. Proceedings of the United States of America, 2020, 117, 28126-28133.	7.1	6
131	The bee and the turtle: a fable from YasunÃ-National Park. Frontiers in Ecology and the Environment, 2012, 10, 446-447.	4.0	5
132	Sensitivity analysis of continuous-time models for ecological and evolutionary theories. Theoretical Ecology, 2015, 8, 481-490.	1.0	5
133	Singularity of the water strider propulsion mechanisms. Journal of Fluid Mechanics, 2021, 915, .	3.4	5
134	Barriers and Promises of the Developing Pigment Organelle Field. Integrative and Comparative Biology, 2021, 61, 1481-1489.	2.0	5
135	Overcoming Drag at the Water-Air Interface Constrains Body Size in Whirligig Beetles. Fluids, 2021, 6, 249.	1.7	5
136	OpenFluo: A free open-source software for optophysiological data analyses. Journal of Neuroscience Methods, 2009, 183, 195-201.	2.5	4
137	Imitating the Cricket Cercal System: The Beauty of the Beast with a Twist of the Engineer. Advances in Science and Technology, 0, , .	0.2	4
138	Indirect cues in selecting a hunting site in a sitâ€andâ€wait predator. Physiological Entomology, 2014, 39, 53-59.	1.5	4
139	Environmental and spatial filters of zooplankton metacommunities in shallow pools in highâ€elevation peatlands in the tropical Andes. Freshwater Biology, 2018, 63, 432-442.	2.4	4
140	A stochastic game model of searching predators and hiding prey. Journal of the Royal Society Interface, 2019, 16, 20190087.	3.4	4
141	How Adsorption of Pheromones on Aerosols Controls Their Transport. ACS Central Science, 2020, 6, 1628-1638.	11.3	4
142	Leakiness and flow capture ratio of insect pectinate antennae. Journal of the Royal Society Interface, 2020, 17, 20190779.	3.4	4
143	Challenges in Modeling Pheromone Capture by Pectinate Antennae. Integrative and Comparative Biology, 2020, 60, 876-885.	2.0	4
144	Editorial overview: Halting the pollinator crisis requires entomologists to step up and assume their societal responsibilities. Current Opinion in Insect Science, 2021, 46, vi-xiii.	4.4	4

0

#	Article	IF	CITATIONS
145	Methoden zur kontinuierlichen Laborzucht von Apfelminiermotten des Artenkomplexes <i>Phyllonorycter blancardella</i> Fabr. (Lep., Gracillariidae) und seiner Parasitoide. Journal of Applied Entomology, 1994, 117, 530-532.	1.8	3
146	Mapping of courses on vector biology and vector-borne diseases systems: time for a worldwide effort. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 717-719.	1.6	3
147	Electronic coupling in the reduced state lies at the origin of color changes of ommochromes. Dyes and Pigments, 2021, 185, 108661.	3.7	3
148	The multiple disguises of spiders. , 2011, , 254-274.		2
149	Impulsive spatial control of invading pests by generalist predators. Mathematical Medicine and Biology, 2014, 31, 284-301.	1.2	2
150	Alley cropping agroforestry mediates carabid beetle distribution at a micro-habitat scale. Agroforestry Systems, 2020, 94, 309-317.	2.0	2
151	Bio-Inspired Architectures Substantially Reduce the Memory Requirements of Neural Network Models. Frontiers in Neuroscience, 2021, 15, 612359.	2.8	2
152	Increasing Demands and Vanishing Expertise in Insect Integrative Biology. Advances in Insect Physiology, 2010, 38, 1-4.	2.7	2
153	Mutual Eavesdropping Through Vibrations in a Host – Parasitoid Interaction. Contemporary Topics in Entomology Series, 2005, , 263-271.	0.3	2
154	Echolocation in Whirligig Beetles Using Surface Waves: An Unsubstantiated Conjecture. Animal Signals and Communication, 2014, , 303-317.	0.8	2
155	Managing fluid and wave resistances by whirligig beetles swimming on water surface. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S125.	1.8	1
156	Editorial overview: Plenty of bugs at the bottom. Current Opinion in Insect Science, 2018, 30, vi-vii.	4.4	1
157	A host-feeding wasp shares several features of nitrogen management with blood-feeding mosquitoes. Journal of Insect Physiology, 2018, 110, 1-5.	2.0	1
158	The Integrative Biology of Pigment Organelles, a Quantum Chemical Approach. Integrative and Comparative Biology, 2021, 61, 1490-1501.	2.0	1
159	8.5. A neuroanatomical guide of the cercal scape system of the wood cricket. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, S33.	1.8	0
160	Invertebrate sound and vibration. Journal of Experimental Biology, 2009, 212, 3935-3935.	1.7	0
161	Bioadhesives. , 2012, , 194-201.		0

Bacterial Electrical Conduction. , 2012, , 173-173.

#	Article	IF	CITATIONS
163	Biomimetic Flow Sensors. , 2016, , 309-322.		0
164	Extend standardised methods and protocols for insect diet composition to insect energy and nutrient budgets. Journal of Insects As Food and Feed, 2020, 6, 441-443.	3.9	0
165	Crickets as Bio-Inspiration for MEMS-Based Flow-Sensing. , 2014, , 459-488.		Ο
166	Laser-Based Optical Methods for the Sensory Ecology of Flow Sensing: From Classical PIV to Micro-PIV and Beyond. , 2014, , 31-62.		0
167	PiÃ ges à fourmis. , 2018, , 16-19.	0.1	0