Kunal Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978365/publications.pdf

Version: 2024-02-01

63 2,349 25 47
papers citations h-index g-index

67 67 67 3157
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 2022, 279, 114759.	5.8	7
2	Hydrogen production technologies - Membrane based separation, storage and challenges. Journal of Environmental Management, 2022, 302, 113963.	7.8	64
3	Metal oxide nanofibers and their applications for biosensing. , 2022, , 113-137.		O
4	Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Critical Reviews in Biotechnology, 2022, 42, 1180-1212.	9.0	22
5	Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review. Biomedical Microdevices, 2022, 24, 2.	2.8	20
6	Biomedical application of ZnO nanoscale materials. , 2022, , 407-435.		2
7	Versatile Graphitized Carbon Nanofibers in Energy Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 1334-1360.	6.7	18
8	Introduction to metal oxide-based biosensing. , 2022, , 169-182.		1
9	Fabrication of High Surface Area Microporous ZnO from ZnO/Carbon Sacrificial Composite Monolith Template. Micromachines, 2022, 13, 335.	2.9	4
10	A Molten Salt Electrochemical Process for the Preparation of Cost-Effective p-Block (Coating) Materials. Crystals, 2022, 12, 385.	2.2	1
11	Printing noble metal alloy films with compositional gradient. Applied Materials Today, 2022, 27, 101405.	4.3	4
12	A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells. Micromachines, 2022, 13, 680.	2.9	14
13	One-step manufacturing process for neodymium-iron (magnet-grade) master alloy. Materials Science for Energy Technologies, 2021, 4, 249-255.	1.8	4
14	Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries. Industrial & Engineering Chemistry Research, 2021, 60, 6061-6077.	3.7	47
15	Palladium-Functionalized Graphene for Hydrogen Sensing Performance: Theoretical Studies. Energies, 2021, 14, 5738.	3.1	24
16	Recent advances in the thermal barrier coatings for extreme environments. Materials Science for Energy Technologies, 2021, 4, 208-210.	1.8	16
17	Si-based MEMS resonant sensor: A review from microfabrication perspective. Microelectronics Journal, 2021, 118, 105210.	2.0	28
18	Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials, 2021, 14, 6442.	2.9	23

#	Article	IF	Citations
19	A Review on Advanced Manufacturing for Hydrogen Storage Applications. Energies, 2021, 14, 8513.	3.1	13
20	Present status of the functional advanced micro-, nano-printings – a mini review. Materials Today Chemistry, 2020, 17, 100328.	3.5	21
21	Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B, 2020, 8, 8992-9027.	5.8	127
22	Advanced Manufacturing of Printed Melt Wire Chips for Cheap, Compact Passive In-Pile Temperature Sensors. Jom, 2020, 72, 4196-4201.	1.9	7
23	Surface Feature Recognition and Grasped Object Slip Prevention With a Liquid Metal Tactile Sensor for a Prosthetic Hand. , 2020, , .		9
24	<i>110th Anniversary: </i> Particle Size Effect on Enhanced Graphitization and Electrical Conductivity of Suspended Gold/Carbon Composite Nanofibers. Industrial & Engineering Chemistry Research, 2020, 59, 1944-1952.	3.7	8
25	Finetuning hierarchical energy material microstructure via high temperature material synthesis route. Materials Today Chemistry, 2020, 16, 100269.	3.5	8
26	Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. ACS Applied Polymer Materials, 2020, 2, 1848-1855.	4.4	5
27	Carbon Nanostructures for Energy and Sensing Applications. Journal of Nanotechnology, 2019, 2019, 1-3.	3.4	17
28	Lightâ€Induced Buckles Localized by Polymeric Inks Printed on Bilayer Films. Small, 2018, 14, e1704460.	10.0	4
29	Role of Photo-catalysis in Water Remediation. Energy, Environment, and Sustainability, 2018, , 117-134.	1.0	4
30	Recent Advances in Carbon–Semiconductor Nanocomposites for Water Remediation. Energy, Environment, and Sustainability, 2018, , 45-74.	1.0	4
31	Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11261-11268.	8.0	149
32	Recent Advances in Soft E-Textiles. Inventions, 2018, 3, 23.	2.5	14
33	Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors. ACS Nano, 2018, 12, 5482-5488.	14.6	63
34	Mechanochromic Stretchable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 29918-29924.	8.0	72
35	Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors and Actuators B: Chemical, 2017, 246, 202-214.	7.8	65
36	Microfluidic detection of soil nitrate ions using novel electrochemical foam electrode., 2017,,.		2

3

#	Article	IF	Citations
37	In situ integration of graphene foam–titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors. Lab on A Chip, 2017, 17, 274-285.	6.0	57
38	ZnO Nanoparticle Fortified Highly Permeable Carbon/Silica Monoliths as a Flow-Through Media. Langmuir, 2017, 33, 7692-7700.	3.5	6
39	Metal-semiconductor core–shell nanostructured photocatalysts for environmental applications and their recycling process. , 2017, , 133-157.		3
40	Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications. Inventions, 2017, 2, 9.	2.5	58
41	Hydration Phenomena of Functionalized Carbon Nanotubes (CNT)/Cement Composites. Fibers, 2017, 5, 39.	4.0	26
42	Facile reduction of para-nitrophenols: catalytic efficiency of silver nanoferns in batch and continuous flow reactors. RSC Advances, 2016, 6, 113981-113990.	3.6	17
43	Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Advances, 2016, 6, 48109-48119.	3.6	64
44	Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Advances, 2016, 6, 83589-83612.	3.6	171
45	Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Advances, 2016, 6, 94595-94616.	3.6	116
46	Microfluidic Immuno-Biochip for Detection of Breast Cancer Biomarkers Using Hierarchical Composite of Porous Graphene and Titanium Dioxide Nanofibers. ACS Applied Materials & Dioxide Interfaces, 2016, 8, 20570-20582.	8.0	157
47	Metal-Oxide Decorated Multilayered Three-Dimensional (3D) Porous Carbon Thin Films for Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2016, 55, 12569-12581.	3.7	27
48	Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sensors and Actuators B: Chemical, 2016, 229, 82-91.	7.8	37
49	One-step sol–gel synthesis of hierarchically porous, flow-through carbon/silica monoliths. RSC Advances, 2016, 6, 12298-12310.	3.6	18
50	Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7646-7656.	8.0	50
51	Study of mechanical properties, microstructures and corrosion behavior of al 7075 t651 alloy with varying strain rate. IOP Conference Series: Materials Science and Engineering, 2015, 75, 012031.	0.6	2
52	Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale, 2015, 7, 7234-7245.	5.6	107
53	Superhydrophobic polymethylsilsesquioxane pinned one dimensional ZnO nanostructures for water remediation through photo-catalysis. RSC Advances, 2015, 5, 45897-45907.	3.6	40
54	Effect of electrical stress on Au/Pb (Zr0.52Ti0.48) O3/TiOxNy/Si gate stack for reliability analysis of ferroelectric field effect transistors. Applied Physics Letters, 2014, 105, 152907.	3.3	16

#	Article	IF	CITATION
55	Photocatalytic Degradation of Naphthalene by Electrospun Mesoporous Carbon-Doped Anatase TiO ₂ Nanofiber Mats. Industrial & Engineering Chemistry Research, 2014, 53, 18900-18909.	3.7	73
56	Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO ₂ Nanofiber Based Interface for Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 2516-2527.	8.0	136
57	A surface functionalized nanoporous titania integrated microfluidic biochip. Nanoscale, 2014, 6, 13958-13969.	5.6	31
58	Multi-Ruthenocene Assemblies on an Organostannoxane Platform. Supramolecular Signatures and Conversion to (Ru–Sn)O ₂ . Crystal Growth and Design, 2014, 14, 861-870.	3.0	17
59	Low voltage non-gassing electro-osmotic pump with zeta potential tuned aluminosilicate frits and organic dye electrodes. RSC Advances, 2014, 4, 28814-28821.	3.6	16
60	Self-organized macroporous thin carbon films for supported metal catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427, 83-94.	4.7	25
61	Processing copper–carbon nanotube composite powders by high energy milling. Materials Characterization, 2013, 84, 58-66.	4.4	38
62	Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. Journal of Colloid and Interface Science, 2013, 394, 208-215.	9.4	131
63	TiO ₂ -nanoparticles-impregnated photocatalytic macroporous carbon films by spin coating. Nanomaterials and Energy, 2013, 2, 121-133.	0.2	19