
Ivelina G Momcheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosing DASH: A Catalog of Structural Properties for the COSMOS-DASH Survey. Astrophysical Journal, 2022, 925, 34.	4.5	12
2	CLEAR: Emission-line Ratios at Cosmic High Noon. Astrophysical Journal, 2022, 926, 161.	4.5	20
3	CLEAR: Paschen-β Star Formation Rates and Dust Attenuation of Low-redshift Galaxies. Astrophysical Journal, 2022, 929, 3.	4.5	12
4	3D-DASH: The Widest Near-infrared Hubble Space Telescope Survey. Astrophysical Journal, 2022, 933, 129.	4.5	6
5	CLEAR: Boosted Lyα Transmission of the Intergalactic Medium in UV-bright Galaxies. Astrophysical Journal, 2022, 933, 87.	4.5	12
6	A Comparison of Rest-frame Ultraviolet and Optical Emission-line Diagnostics in the Lensed Galaxy SDSSÂJ1723+3411 at Redshift zÂ=Â1.3293. Astrophysical Journal, 2021, 908, 154.	4.5	12
7	Spatial Variation in Strong Line Ratios and Physical Conditions in Two Strongly Lensed Galaxies at zÂâ^¼Â1.4. Astrophysical Journal, 2021, 916, 50.	4.5	8
8	CLEAR: The Gas-phase Metallicity Gradients of Star-forming Galaxies at 0.6 < z < 2.6. Astrophysical Journal, 2021, 923, 203.	4.5	30
9	The Regulation of Galaxy Growth along the Size–Mass Relation by Star Formation, as Traced by Hα in KMOS ^{3D} Galaxies at 0.7A≲ÂzÂ≲Â2.7*. Astrophysical Journal, 2020, 892, 1.	4.5	54
10	The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87.	4.5	19
11	CLEAR. II. Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift. Astrophysical Journal, 2020, 898, 171.	4.5	45
12	COSMOS-DASH: The Evolution of the Galaxy Size–Mass Relation since zÂâ^¼Â3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST. Astrophysical Journal, 2019, 880, 57.	4.5	118
13	Galaxy Merger Fractions in Two Clusters at Using the Hubble Space Telescope. Astrophysical Journal, 2019, 874, 63.	4.5	22
14	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. Astrophysical Journal, 2019, 877, 140.	4.5	156
15	CLEAR. I. Ages and Metallicities of Quiescent Galaxies at 1.0Â<ÂzÂ<Â1.8 Derived from Deep Hubble Space Telescope Grism Data. Astrophysical Journal, 2019, 870, 133.	4.5	57
16	The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy*. Astrophysical Journal, 2018, 854, 29.	4.5	24
17	Spatially Extended Low-ionization Emission Regions (LIERs) at zÂâ^¼Â0.9. Astrophysical Journal, 2018, 868, 16.	4.5	1
18	KMOS ^{3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7Â<ÂzÂ<Â2.7 ^{â^—} . Astrophysical Journal Letters, 2017, 841, L6.	8.3	44

Ivelina G Momcheva

#	Article	IF	CITATIONS
19	Falling Outer Rotation Curves of Star-forming Galaxies at 0.6Â≲ÂzÂ≲Â2.6 Probed with KMOS ^{3Dand SINS/zC-SINF. Astrophysical Journal, 2017, 840, 92.}	^p } 4.5	64
20	Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 < z < 2.5. Astrophysical Journal, 2017, 838, 19.	4.5	87
21	A New Method for Wide-field Near-IR Imaging with the <i>Hubble Space Telescope</i> . Publications of the Pacific, 2017, 129, 015004.	3.1	22
22	The Ages of Passive Galaxies in a z = 1.62 Protocluster. Astrophysical Journal, 2017, 844, 43.	4.5	26
23	Deep CO(1–0) Observations of zÂ=Â1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies. Astrophysical Journal, 2017, 849, 27.	4.5	58
24	A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for H _O . Astrophysical Journal, 2017, 850, 94.	4.5	10
25	AGES OF MASSIVE GALAXIES AT 0.5 > z > 2.0 FROM 3D-HST REST-FRAME OPTICAL SPECTROSCOPY. Astrophysical Journal, 2016, 822, 1.	4.5	37
26	THE EVOLUTION OF THE FRACTIONS OF QUIESCENT AND STAR-FORMING GALAXIES AS A FUNCTION OF STELLAR MASS SINCE z =Â3: INCREASING IMPORTANCE OF MASSIVE, DUSTY STAR-FORMING GALAXIES IN THE EARLY UNIVERSE. Astrophysical Journal Letters, 2016, 827, L25.	8.3	49
27	KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS*. Astrophysical Journal, 2016, 831, 149.	4.5	83
28	SPATIALLY RESOLVED DUST MAPS FROM BALMER DECREMENTS IN GALAXIES AT z â^1/4 1.4. Astrophysical Journal Letters, 2016, 817, L9.	8.3	84
29	A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES: THE GROUP CATALOG. Astrophysical Journal, 2016, 833, 194.	4.5	20
30	THE RELATION BETWEEN [O III] / H $\hat{1}^2$ AND SPECIFIC STAR FORMATION RATE IN GALAXIES AT z $\hat{a}^{-1}\!\!/4$ 2. Astrophysical Journal Letters, 2016, 828, L11.	8.3	16
31	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST HαÂMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7Â< zÂ<Â1.5. Astrophysical Journal, 2016, 828, 27.	4.5	166
32	THE 3D-HST SURVEY: <i>HUBBLE SPACE TELESCOPE</i> WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR â^¼100,000 GALAXIES. Astrophysical Journal, Supplement Series, 2016, 225, 27.	7.7	513
33	LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE. Astrophysical Journal, 2016, 822, 30.	4.5	26
34	THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM $z = 2.7$ TO 0.6 WITH KMOS ^{3D} . Astrophysical Journal, 2016, 827, 74.	4.5	109
35	FORMING COMPACT MASSIVE GALAXIES. Astrophysical Journal, 2015, 813, 23.	4.5	240
36	FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF <i>UVJ</i> -SELECTED QUIESCENT GALAXIES AT 1.5 < <i>z</i> < 2 FROM KMOS. Astrophysical Journal Letters, 2015, 804, L4.	8.3	35

#	Article	IF	CITATIONS
37	GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER. Astrophysical Journal Letters, 2015, 811, L12.	8.3	98
38	ZFIRE: GALAXY CLUSTER KINEMATICS, $H \langle i \rangle \hat{I} \pm \langle /i \rangle$ STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT $f_z = mathrm{cl} = 1.6233$. Astrophysical Journal, 2015, 811, 28.	4.5	54
39	A SPECTROSCOPIC SURVEY OF THE FIELDS OF 28 STRONG GRAVITATIONAL LENSES. Astrophysical Journal, Supplement Series, 2015, 219, 29.	7.7	24
40	THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR â^¼1500 <i>H</i> -SELECTED GALAXIES AT \$1.37leqslant zleqslant 3.8\$. Astrophysical Journal, Supplement Series, 2015, 218, 15.	7.7	312
41	3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES. Astrophysical Journal, Supplement Series, 2014, 214, 24.	7.7	728
42	A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < <i>z</i> < 2.6. Astrophysical Journal Letters, 2014, 789, L40.	8.3	96
43	DENSE CORES IN GALAXIES OUT TO <i>z</i> = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS. Astrophysical Journal, 2014, 791, 45.	4.5	111
44	HOW DEAD ARE DEAD GALAXIES? MID-INFRARED FLUXES OF QUIESCENT GALAXIES AT REDSHIFT 0.3 < <i>z</i> < 2.5: IMPLICATIONS FOR STAR FORMATION RATES AND DUST HEATING. Astrophysical Journal, 2014, 796, 35.	4.5	75
45	THE NATURE OF EXTREME EMISSION LINE GALAXIES AT <i>z</i> = 1-2: KINEMATICS AND METALLICITIES FROM NEAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2014, 791, 17.	4.5	97
46	DIRECT MEASUREMENTS OF DUST ATTENUATION IN <i>z</i> àî¼ 1.5 STAR-FORMING GALAXIES FROM 3D-HST: IMPLICATIONS FOR DUST GEOMETRY AND STAR FORMATION RATES. Astrophysical Journal, 2014, 788, 86.	4.5	150
47	BULGE GROWTH AND QUENCHING SINCE <i>z</i> = 2.5 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 788, 11.	4.5	244
48	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCE <i>z</i> 2.5: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. Astrophysical Journal, 2014, 789, 164.	4.5	74
49	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < <i>z</i> < 2.5. Astrophysical Journal, 2014, 795, 104.	4.5	646
50	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
51	DISCOVERY OF A STRONG LENSING GALAXY EMBEDDED IN A CLUSTER AT <i>z</i> = 1.62. Astrophysical Journal Letters, 2014, 789, L31.	8.3	16
52	CONFIRMATION OF SMALL DYNAMICAL AND STELLAR MASSES FOR EXTREME EMISSION LINE GALAXIES AT <i>z</i> â^¼ 2. Astrophysical Journal Letters, 2013, 778, L22.	8.3	41
53	A CANDELS-3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < <i>z</i> < 1.5. Astrophysical Journal, 2013, 779, 135.	4.5	202
54	QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT <i>z</i> â ¹ /4 2. Astrophysical Journal Letters, 2013, 770, L39.	8.3	117

Ivelina G Momcheva

#	Article	IF	CITATIONS
55	THE ASSEMBLY OF MILKY-WAY-LIKE GALAXIES SINCE <i>z</i> â^¼ 2.5. Astrophysical Journal Letters, 2013, 771, L35.	8.3	202
56	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCE <i>z</i> â ¹ /4 1.3. Astrophysica Journal, 2013, 778, 115.	al 4.5	45
57	The spatial extent and distribution of star formation in 3D-HST mergers at z â ⁻¹ ⁄4 1.5. Monthly Notices of the Royal Astronomical Society, 2013, 432, 285-300.	4.4	16
58	CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT <i>z</i> = 1.62. Astrophysical Journal, 2013, 773, 154.	4.5	58
59	3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, Supplement Series, 2012, 200, 13.	7.7	536
60	Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass. Proceedings of the International Astronomical Union, 2012, 8, 91-91.	0.0	0
61	3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT <i>>z</i> = 1.847. Astrophysical Journal Letters, 2012, 758, L17.	8.3	73
62	A TALE OF DWARFS AND GIANTS: USING A <i>z</i> = 1.62 CLUSTER TO UNDERSTAND HOW THE RED SEQUENCE GREW OVER THE LAST 9.5 BILLION YEARS. Astrophysical Journal, 2012, 755, 14.	4.5	53
63	THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES. Astrophysical Journal, 2011, 726, 84.	4.5	65
64	REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT <i>z</i> = 1.62. Astrophysical Journal Letters, 2010, 719, L126-L129.	8.3	187
65	A Spectroscopic Study of the Environments of Gravitational Lens Galaxies. Astrophysical Journal, 2006, 641, 169-189.	4.5	95
66	First Results from a Photometric Survey of Strong Gravitational Lens Environments. Astrophysical Journal, 2006, 646, 85-106.	4.5	52