
Nikolaos P Daskalakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7976082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing Discovery of Genetic Variants for Posttraumatic Stress Disorder Through Integration of Quantitative Phenotypes and Trauma Exposure Information. Biological Psychiatry, 2022, 91, 626-636.	1.3	21
2	Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Molecular Psychiatry, 2022, 27, 2225-2246.	7.9	9
3	Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiology of Stress, 2022, 18, 100455.	4.0	24
4	Revisiting the Need for a PTSD Brain Bank; Commentary on Friedman. Psychiatry (New York), 2022, 85, 203-211.	0.7	0
5	Intergenerational trauma is associated with expression alterations in glucocorticoid- and immune-related genes. Neuropsychopharmacology, 2021, 46, 763-773.	5.4	19
6	Klotho, PTSD, and advanced epigenetic age in cortical tissue. Neuropsychopharmacology, 2021, 46, 721-730.	5.4	16
7	GWAS meets transcriptomics: from genetic letters to transcriptomic words of neuropsychiatric risk. Neuropsychopharmacology, 2021, 46, 255-256.	5.4	9
8	Increasing the resolution and precision of psychiatric genomeâ€wide association studies by reâ€imputing summary statistics using a large, diverse reference panel. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 16-27.	1.7	4
9	PTSD Genome-Wide Association Study Identifies Novel Loci and Informs Future Expectations. Biological Psychiatry, 2021, 89, S69-S70.	1.3	0
10	Refining Imputation Models of Molecular Phenotypes in the Dorsolateral Prefrontal Cortex to Improve Understanding of Risk Across Neuropsychiatric Disorders. Biological Psychiatry, 2021, 89, S225.	1.3	0
11	Testing Glucocorticoid Mediated Differential Gene Expression in IPSC Derived Neural Cultures as a Model for PTSD. Biological Psychiatry, 2021, 89, S307.	1.3	0
12	Single-Nucleus Transcriptomic Dissection of PTSD and MDD in Human Post-Mortem DLPFC Reveals Genetic and Environmental Regulation. Biological Psychiatry, 2021, 89, S71.	1.3	4
13	Oxidative Dysregulation in Early Life Stress and Posttraumatic Stress Disorder: A Comprehensive Review. Brain Sciences, 2021, 11, 723.	2.3	34
14	Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Frontiers in Behavioral Neuroscience, 2021, 15, 652636.	2.0	17
15	Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development. Neuropsychopharmacology, 2021, 46, 1811-1820.	5.4	15
16	Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Reports, 2021, 35, 109185.	6.4	42
17	Gene expression in the dorsolateral and ventromedial prefrontal cortices implicates immune-related gene networks in PTSD. Neurobiology of Stress, 2021, 15, 100398.	4.0	19
18	From genetics to systems biology of stress-related mental disorders. Neurobiology of Stress, 2021, 15, 100393.	4.0	13

#	Article	IF	CITATIONS
19	The Biological Effects of Trauma. Complex Psychiatry, 2021, 7, 16-18.	0.9	2
20	Contributions of PTSD polygenic risk and environmental stress to suicidality in preadolescents. Neurobiology of Stress, 2021, 15, 100411.	4.0	11
21	Driving Progress in Posttraumatic Stress Disorder Biomarkers. Biological Psychiatry, 2020, 87, e13-e14.	1.3	4
22	Molecular genetic overlap between posttraumatic stress disorder and sleep phenotypes. Sleep, 2020, 43, .	1.1	32
23	Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nature Communications, 2020, 11, 5180.	12.8	15
24	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	6.4	44
25	Single-Nucleus Transcriptomic Analysis of PTSD and MDD in Human Post-Mortem DLPFC. Biological Psychiatry, 2020, 87, S25.	1.3	0
26	<scp>TWAS</scp> pathway method greatly enhances the number of leads for uncovering the molecular underpinnings of psychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 454-463.	1.7	16
27	Cross-platform comparison of highly sensitive immunoassay technologies for cytokine markers: Platform performance in post-traumatic stress disorder and Parkinson's disease. Cytokine: X, 2020, 2, 100027.	1.4	26
28	Cross-Platform Comparison of Immunoassay Technologies to Assess Cytokine Markers in Patients With Post-Traumatic Stress Disorder and Parkinson's Disease. Biological Psychiatry, 2020, 87, S378.	1.3	0
29	An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clinical Epigenetics, 2020, 12, 46.	4.1	64
30	Intergenerational Effects of Maternal Holocaust Exposure on <i>FKBP5</i> Methylation. American Journal of Psychiatry, 2020, 177, 744-753.	7.2	49
31	PTSD and the klotho longevity gene: Evaluation of longitudinal effects on inflammation via DNA methylation. Psychoneuroendocrinology, 2020, 117, 104656.	2.7	11
32	PTSD Biomarker Database: deep dive metadatabase for PTSD biomarkers, visualizations and analysis tools. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	9
33	International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 2019, 10, 4558.	12.8	363
34	Sex-Dependent Changes in miRNA Expression in the Bed Nucleus of the Stria Terminalis Following Stress. Frontiers in Molecular Neuroscience, 2019, 12, 236.	2.9	17
35	Systems biology of vulnerability and resilience: Adaptation to early life adversity?. Psychoneuroendocrinology, 2019, 107, 51-52.	2.7	0
36	Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: a novel approach to PTSD biomarker development. Translational Psychiatry, 2019, 9, 201.	4.8	27

#	Article	IF	CITATIONS
37	GENETICALLY REGULATED GENE EXPRESSION IN BRAIN AND PERIPHERAL TISSUES IN PTSD. European Neuropsychopharmacology, 2019, 29, S1056.	0.7	0
38	28. An Epigenome-Wide Association Study of PTSD in Veterans Implicates Several New DNA Methylation Loci. Biological Psychiatry, 2019, 85, S12.	1.3	2
39	200. Dissecting the Transcriptomic and Phenotypic Complexity of PTSD With Transcriptomic Imputation and Bayesian Machine Learning. Biological Psychiatry, 2019, 85, S83.	1.3	Ο
40	T155. Variational Autoencoder Identifies Clinically Meaningful Latent Features in Neurodegeneration and Neuropsychiatry Based on Blood Gene Expression and Genetically Regulated Gene Expression Across Tissue-Types. Biological Psychiatry, 2019, 85, S189.	1.3	0
41	Noncoding RNAs: Stress, Glucocorticoids, and Posttraumatic Stress Disorder. Biological Psychiatry, 2018, 83, 849-865.	1.3	58
42	217. Integrative Systems Approach Identifies HPA-Axis Related Gene Networks in PTSD. Biological Psychiatry, 2018, 83, S87.	1.3	0
43	228. Transcriptome-Wide Analysis Identifies ICAM5 Differentially Expressed in Chronic PTSD Symptoms Versus Resiliency Post Trauma Exposure in a Longitudinal Study. Biological Psychiatry, 2018, 83, S91-S92.	1.3	1
44	Recent Genetics and Epigenetics Approaches to PTSD. Current Psychiatry Reports, 2018, 20, 30.	4.5	89
45	T25. Genome-Wide MicroRNA Expression Analysis of PTSD With Comorbid Depression: A Meta-Analysis of Civilian and Veteran Datasets. Biological Psychiatry, 2018, 83, S138.	1.3	Ο
46	Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Molecular Psychiatry, 2018, 23, 1145-1156.	7.9	98
47	Endolysosomal degradation of Tau and its role in glucocorticoidâ€driven hippocampal malfunction. EMBO Journal, 2018, 37, .	7.8	73
48	Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction. Translational Psychiatry, 2018, 8, 164.	4.8	24
49	227. Longitudinal Changes in Glucocorticoid Receptor Exon 1F Methylation as a Biomarker for Psychopathology After Military Deployment. Biological Psychiatry, 2018, 83, S91.	1.3	1
50	90. Second Generation Effects of Trauma: Evidence for Developmental Programming. Biological Psychiatry, 2017, 81, S38.	1.3	1
51	697. Testing the Three-Hit Hypothesis of Stress Susceptibility and Resilience in the Rat. Biological Psychiatry, 2017, 81, S282-S283.	1.3	0
52	347. An Integrative Psychobiological Model of Resilience in World Trade Center Responders. Biological Psychiatry, 2017, 81, S142.	1.3	0
53	Longitudinal Changes In Glucocorticoid Receptor 1f Methylation And Psychopathology After Military Deployment. European Neuropsychopharmacology, 2017, 27, S470-S471.	0.7	0
54	344. FKBP5 Methylation: Stable Trait or Fluctuating State?. Biological Psychiatry, 2017, 81, S141.	1.3	0

NIKOLAOS P DASKALAKIS

#	Article	IF	CITATIONS
55	424. Genomic Mediators of PTSD in Blood and Brain. Biological Psychiatry, 2017, 81, S173.	1.3	0
56	Longitudinal changes in glucocorticoid receptor exon 1F methylation and psychopathology after military deployment. Translational Psychiatry, 2017, 7, e1181-e1181.	4.8	24
57	Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. ELife, 2017, 6, .	6.0	136
58	New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Experimental Neurology, 2016, 284, 133-140.	4.1	78
59	Endocrine Aspects of PTSD: Hypothalamic-Pituitary-Adrenal (HPA) Axis and Beyond. , 2016, , 245-260.		11
60	Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biological Psychiatry, 2016, 80, 372-380.	1.3	532
61	Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Frontiers in Molecular Neuroscience, 2015, 8, 68.	2.9	108
62	Schizophrenia in the Spectrum of Gene-Stress Interactions: The FKBP5 Example. Schizophrenia Bulletin, 2015, 41, 323-329.	4.3	27
63	Defeat stress in rodents: From behavior to molecules. Neuroscience and Biobehavioral Reviews, 2015, 59, 111-140.	6.1	185
64	Lower Methylation of Glucocorticoid Receptor Gene Promoter 1F in Peripheral Blood of Veterans with Posttraumatic Stress Disorder. Biological Psychiatry, 2015, 77, 356-364.	1.3	250
65	Endocrine Aspects of PTSD: Hypothalamic-Pituitary-Adrenal (HPA) Axis and Beyond. , 2015, , 1-14.		2
66	Immediate Effects of Maternal Deprivation on the (Re)Activity of the HPA-Axis Differ in CD1 and C57Bl/6J Mouse Pups. Frontiers in Endocrinology, 2014, 5, 190.	3.5	16
67	Maternal Age at Holocaust Exposure and Maternal PTSD Independently Influence Urinary Cortisol Levels in Adult Offspring. Frontiers in Endocrinology, 2014, 5, 103.	3.5	27
68	Influences of Maternal and Paternal PTSD on Epigenetic Regulation of the Glucocorticoid Receptor Gene in Holocaust Survivor Offspring. American Journal of Psychiatry, 2014, 171, 872-880.	7.2	394
69	Glucocorticoid-related predictors and correlates of post-traumatic stress disorder treatment response in combat veterans. Interface Focus, 2014, 4, 20140048.	3.0	76
70	Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13529-13534.	7.1	113
71	Early experience of a novel-environment in isolation primes a fearful phenotype characterized by persistent amygdala activation. Psychoneuroendocrinology, 2014, 39, 39-57.	2.7	32
72	Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology, 2014, 40, 213-220.	2.7	131

#	Article	IF	CITATIONS
73	Elevation of 11β-hydroxysteroid dehydrogenase type 2 activity in Holocaust survivor offspring: Evidence for an intergenerational effect of maternal trauma exposure. Psychoneuroendocrinology, 2014, 48, 1-10.	2.7	45
74	Principles for developing animal models of military PTSD. Högre Utbildning, 2014, 5, .	3.0	25
75	Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: systematic review of contributing factors. Frontiers in Neuroscience, 2014, 8, 369.	2.8	84
76	Early Maternal Influences on Stress Circuitry: Implications for Resilience and Susceptibility to Physical and Mental Disorders. Frontiers in Endocrinology, 2014, 5, 244.	3.5	5
77	Animal models in translational studies of PTSD. Psychoneuroendocrinology, 2013, 38, 1895-1911.	2.7	108
78	The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 2013, 38, 1858-1873.	2.7	439
79	Endocrine Aspects of Post-traumatic Stress Disorder and Implications for Diagnosis and Treatment. Endocrinology and Metabolism Clinics of North America, 2013, 42, 503-513.	3.2	169
80	Epigenetic Biomarkers as Predictors and Correlates of Symptom Improvement Following Psychotherapy in Combat Veterans with PTSD. Frontiers in Psychiatry, 2013, 4, 118.	2.6	263
81	Early handling modulates outcome of neonatal dexamethasone exposure. Hormones and Behavior, 2012, 62, 433-441.	2.1	16
82	Drawings Reflect a New Dimension of the Psychological Impact of Long-Term Remission of Cushing's Syndrome. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 3123-3131.	3.6	32
83	Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity. Physiology and Behavior, 2012, 106, 707-721.	2.1	101
84	The newborn rat's stress system readily habituates to repeated and prolonged maternal separation, while continuing to respond to stressors in context dependent fashion. Hormones and Behavior, 2011, 60, 165-176.	2.1	37
85	Cortisol rapidly disrupts prepulse inhibition in healthy men. Psychoneuroendocrinology, 2011, 36, 109-114.	2.7	33
86	Development of individual differences in stress responsiveness: an overview of factors mediating the outcome of early life experiences. Psychopharmacology, 2011, 214, 141-154.	3.1	100
87	Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 2010, 12, 1625-1636.	1.9	393
88	Environmental and tactile stimulation modulates the neonatal handling effect on adult rat spatial memory. International Journal of Developmental Neuroscience, 2009, 27, 747-755.	1.6	20
89	Analysis of Genetically Regulated Gene Expression Identifies a Trauma Type Specific PTSD Gene, SNRNP35. SSRN Electronic Journal, 0, , .	0.4	0
90	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, <i>SNRNP35</i> , Specific to Military Cohorts. SSRN Electronic Journal, 0, , .	0.4	0