List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975580/publications.pdf Version: 2024-02-01

Μίνι Ηλνι

#	Article	IF	CITATIONS
1	Combined legumain- and integrin-targeted nanobubbles for molecular ultrasound imaging of breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102533.	3.3	9
2	Oxygen-Vacancy-Rich NiMnZn-Layered Double Hydroxide Nanosheets Married with Mo ₂ CT _{<i>x</i>} MXene for High-Efficiency All-Solid-State Hybrid Supercapacitors. ACS Applied Energy Materials, 2022, 5, 3346-3358.	5.1	17
3	Selfâ€Supported Goldâ€Silkâ€Chrysanthemum‣ike Superstructures Arrays Derived from Mnâ€doped CoPS Nanowires with Superhydrophilic and Superaerophobic Surface for Enhanced Oxygen Evolution. Advanced Materials Interfaces, 2022, 9, .	3.7	4
4	Dual-electroactive metal–organic framework nanosheets as negative electrode materials for supercapacitors. Chemical Engineering Journal, 2022, 450, 137193.	12.7	16
5	Engineering high-entropy alloy nanowires network for alcohol electrooxidation. Journal of Colloid and Interface Science, 2022, 625, 1012-1021.	9.4	22
6	A boronate-modified renewable nanointerface for ultrasensitive electrochemical assay of cellulase activity. Chinese Chemical Letters, 2021, 32, 1470-1474.	9.0	6
7	Phaseâ€Modulation of Iron/Nickel Phosphides Nanocrystals "Armored―with Porous Pâ€Doped Carbon and Anchored on Pâ€Doped Graphene Nanohybrids for Enhanced Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2010912.	14.9	54
8	Rapid Aqueous Synthesis of Large‣ize and Edge/Defectâ€Rich Porous Pd and Pdâ€Alloyed Nanomesh for Electrocatalytic Ethanol Oxidation. Chemistry - A European Journal, 2021, 27, 11175-11182.	3.3	12
9	Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light: Science and Applications, 2021, 10, 180.	16.6	23
10	A small molecule with a big scissoring effect: sodium dodecyl sulfate working on two-dimensional metal–organic frameworks. CrystEngComm, 2021, 23, 1360-1365.	2.6	11
11	Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Applied Catalysis B: Environmental, 2020, 260, 118207.	20.2	74
12	Nanostructured metal chalcogenides confined in hollow structures for promoting energy storage. Nanoscale Advances, 2020, 2, 583-604.	4.6	18
13	Engineering bimetal Cu, Co sites on 3D N-doped porous carbon nanosheets for enhanced oxygen reduction electrocatalysis. Chemical Communications, 2020, 56, 10010-10013.	4.1	25
14	Versatile Synthesis of Pdâ^'M (M=Cr, Mo, W) Alloy Nanosheets Flowerâ€like Superstructures for Efficient Oxygen Reduction Electrocatalysis. ChemCatChem, 2020, 12, 4138-4148.	3.7	14
15	Alternate Integration of Vertically Oriented CuSe@FeOOH and CuSe@MnOOH Hybrid Nanosheets Frameworks for Flexible In-Plane Asymmetric Micro-supercapacitors. ACS Applied Energy Materials, 2020, 3, 3692-3703.	5.1	35
16	Versatile Synthesis of Ultrafine Ternary Spinel Oxides/Carbon Nanohybrids toward the Oxygen Reduction Reaction. Energy & Fuels, 2020, 34, 9069-9075.	5.1	7
17	Highly branched ultrathin Pt–Ru nanodendrites. Chemical Communications, 2019, 55, 11131-11134.	4.1	31
18	Cu,Nâ€Codoped Carbon Nanodisks with Biomimic Stomataâ€Like Interconnected Hierarchical Porous Topology as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1902410.	10.0	66

#	Article	IF	CITATIONS
19	Cobalt Phosphides Nanocrystals Encapsulated by Pâ€Doped Carbon and <i>Married</i> with Pâ€Doped Graphene for Overall Water Splitting. Small, 2019, 15, e1804546.	10.0	110
20	Crystalline Facet-Directed Generation Engineering of Ultrathin Platinum Nanodendrites. Journal of Physical Chemistry Letters, 2019, 10, 663-671.	4.6	49
21	Integrating ultrathin and modified NiCoAl-layered double-hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale, 2019, 11, 9896-9905.	5.6	95
22	Enhanced Catalytic Performance for Oxygen Reduction Reaction Derived from Nitrogen-Rich Tetrazolate-Based Heterometallic Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 2991-2999.	3.0	14
23	Catalytic Hydrogenation of Nitrophenols by Cubic and Hexagonal Phase Unsupported Ni Nanocrystals. ChemistrySelect, 2019, 4, 42-48.	1.5	10
24	Polyoxometalate precursors for precisely controlled synthesis of bimetallic sulfide heterostructure through nucleation-doping competition. Nanoscale, 2018, 10, 8404-8412.	5.6	65
25	Well-Coupled Nanohybrids Obtained by Component-Controlled Synthesis and in Situ Integration of Mn _{<i>x</i>} Pd _{<i>y</i>} Nanocrystals on Vulcan Carbon for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8155-8164.	8.0	20
26	A "Signal On―Photoelectrochemical Biosensor Based on Bismuth@N,O odoped arbon Core‧hell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells. Chemistry - A European Journal, 2018, 24, 3677-3682.	3.3	35
27	A "Signal On―Photoelectrochemical Biosensor Based on Bismuth@N,O-Codoped-Carbon Core-Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells. Chemistry - A European Journal, 2018, 24, 3638-3638.	3.3	1
28	Ultrathin palladium nanosheets with selectively controlled surface facets. Chemical Science, 2018, 9, 4451-4455.	7.4	89
29	Defectâ€Rich Ni ₃ FeN Nanocrystals Anchored on Nâ€Doped Graphene for Enhanced Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2018, 28, 1706018.	14.9	169
30	Amorphous Y(OH) ₃ -promoted Ru/Y(OH) ₃ nanohybrids with high durability for electrocatalytic hydrogen evolution in alkaline media. Chemical Communications, 2018, 54, 12202-12205.	4.1	19
31	High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) ₂ Hybrid Nanosheet Films. ACS Applied Materials & Interfaces, 2018, 10, 38341-38349.	8.0	41
32	<i>In situ</i> hybridization of an MXene/TiO ₂ /NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Advances, 2018, 8, 20576-20584.	3.6	75
33	3D Porous Nanoarchitectures Derived from SnS/Sâ€Doped Graphene Hybrid Nanosheets for Flexible Allâ€5olidâ€5tate Supercapacitors. Small, 2017, 13, 1603494.	10.0	55
34	Component-Controlled Synthesis of Necklace-Like Hollow Ni _{<i>X</i>} Ru _{<i>y</i>} Nanoalloys as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 17326-17336.	8.0	60
35	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	14.6	557
36	Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors. ACS Omega, 2017, 2, 1089-1096.	3.5	45

#	Article	IF	CITATIONS
37	Novel surfactant-directed synthesis of ultra-thin palladium nanosheets as efficient electrocatalysts for glycerol oxidation. Chemical Communications, 2017, 53, 1642-1645.	4.1	47
38	Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 16690-16697.	10.3	69
39	Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo ₂ S ₄ nanosheets. Inorganic Chemistry Frontiers, 2016, 3, 1501-1509.	6.0	69
40	Facile synthesis of ultrathin single-crystalline palladium nanowires with enhanced electrocatalytic activities. Chemical Communications, 2016, 52, 12996-12999.	4.1	30
41	Coralloid Co ₂ P ₂ O ₇ Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 22534-22544.	8.0	91
42	Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H ₂ with Unprecedented Stability. Advanced Materials, 2016, 28, 8906-8911.	21.0	271
43	Detection of hydrogen peroxide at a palladium nanoparticle-bilayer graphene hybrid-modified electrode. Sensors and Actuators B: Chemical, 2016, 230, 690-696.	7.8	39
44	Stabilization of polysulfides via lithium bonds for Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 5406-5409.	10.3	105
45	Monoclinic Copper(I) Selenide Nanocrystals and Copper(I) Selenide/Palladium Heterostructures: Synthesis, Characterization, and Surface-Enhanced Raman Scattering Performance. European Journal of Inorganic Chemistry, 2015, 2015, 2229-2236.	2.0	13
46	Porous Molybdenumâ€Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 12928-12932.	13.8	368
47	An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy and Environmental Science, 2015, 8, 1992-1997.	30.8	113
48	Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Research Letters, 2015, 10, 1021.	5.7	24
49	Five-Fold Twinned Pd ₂ NiAg Nanocrystals with Increased Surface Ni Site Availability to Improve Oxygen Reduction Activity. Journal of the American Chemical Society, 2015, 137, 2820-2823.	13.7	100
50	Nitrogen-doped Fe/Fe ₃ C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chemical Communications, 2015, 51, 2710-2713.	4.1	377
51	Component-Controlled Synthesis and Assembly of Cu–Pd Nanocrystals on Graphene for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 5347-5357.	8.0	60
52	Self-assembly of a mesoporous ZnS/mediating interface/CdS heterostructure with enhanced visible-light hydrogen-production activity and excellent stability. Chemical Science, 2015, 6, 5263-5268.	7.4	65
53	Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chemical Communications, 2015, 51, 12377-12380.	4.1	99
54	A nanoscaled Au–horseradish peroxidase composite fabricated by an interface reaction and its characterization, immobilization and biosensing. Analytical Methods, 2015, 7, 3466-3471.	2.7	1

#	Article	IF	CITATIONS
55	Solvothermal Synthesis of Lateral Heterojunction Sb ₂ Te ₃ /Bi ₂ Te ₃ Nanoplates. Nano Letters, 2015, 15, 5905-5911.	9.1	56
56	Surfactant Charge Mediated Shape Control of Nano- or Microscaled Coordination Polymers: The Case of Tetrapyridylporphine Based Metal Complex. Crystal Growth and Design, 2014, 14, 1251-1257.	3.0	17
57	Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. Biosensors and Bioelectronics, 2014, 54, 331-338.	10.1	49
58	Well-Coupled Graphene and Pd-Based Bimetallic Nanocrystals Nanocomposites for Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2014, 6, 2086-2094.	8.0	67
59	Synergistic effect of mesoporous Mn ₂ O ₃ -supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 1272-1276.	10.3	51
60	Synthesis of PbS/PbI2 Nanocomposites in Mixed Solvent and Their Composition-Dependent Electrogenerated Chemiluminescence Performance. Inorganic Chemistry, 2014, 53, 8548-8554.	4.0	4
61	Correction to Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano, 2014, 8, 6509-6509.	14.6	6
62	Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 6316-6319.	10.3	179
63	Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano, 2014, 8, 3761-3770.	14.6	322
64	In Situ-Generated Nano-Gold Plasmon-Enhanced Photoelectrochemical Aptasensing Based on Carboxylated Perylene-Functionalized Graphene. Analytical Chemistry, 2014, 86, 1306-1312.	6.5	93
65	Controllable Synthesis of Tetragonal and Cubic Phase Cu ₂ Se Nanowires Assembled by Small Nanocubes and Their Electrocatalytic Performance for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 15164-15173.	3.1	73
66	Mesoporous SiO2–(l)-lysine hybrid nanodisks: direct electron transfer of superoxide dismutase, sensitive detection of superoxide anions and its application in living cell monitoring. RSC Advances, 2013, 3, 20456.	3.6	10
67	Componentâ€Controlled Synthesis of Smallâ€Sized Pdâ€Ag Bimetallic Alloy Nanocrystals and Their Application in a Nonâ€Enzymatic Glucose Biosensor. Particle and Particle Systems Characterization, 2013, 30, 549-556.	2.3	27
68	Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection. Analyst, The, 2013, 138, 3131.	3.5	14
69	Gold–antibody nanocomposite thin film fabricated by a liquid–liquid interface technique and its application for the sensitive immunoassay of alpha-fetoprotein. Analytical Methods, 2013, 5, 1909.	2.7	5
70	Anodic electrochemiluminescence of SBA-15 and its sensing application. Electrochemistry Communications, 2013, 35, 94-96.	4.7	3
71	Synthesis of Octopus-Tentacle-Like Cu Nanowire-Ag Nanocrystals Heterostructures and Their Enhanced Electrocatalytic Performance for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2012, 4, 6654-6660.	8.0	46
72	A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki–Miyaura reaction. Catalysis Science and Technology, 2012, 2, 2332.	4.1	99

#	Article	IF	CITATIONS
73	A superoxide anion biosensor based on direct electron transfer of superoxide dismutase on sodium alginate sol–gel film and its application to monitoring of living cells. Analytica Chimica Acta, 2012, 717, 61-66.	5.4	59
74	Endonuclease cleavage combined with horseradish peroxidase-assisted signal amplification for electrochemical monitoring of DNA. Electrochemistry Communications, 2012, 22, 133-136.	4.7	6
75	Facile synthesis of porous copper nanobelts and their catalytic performance. Materials Research Bulletin, 2012, 47, 4438-4444.	5.2	6
76	Small-sized Ag nanocrystals: high yield synthesis in a solid–liquid phase system, growth mechanism and their successful application in the Sonogashira reaction. RSC Advances, 2012, 2, 6061.	3.6	6
77	Gramâ€Scale Synthesis of Multipod Pd Nanocrystals by a Simple Solid–Liquid Phase Reaction and Their Remarkable Electrocatalytic Properties. European Journal of Inorganic Chemistry, 2012, 2012, 3740-3746.	2.0	4
78	Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin. Electrochimica Acta, 2012, 65, 1-6.	5.2	35
79	Pd nanoparticle assemblies—As the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosensors and Bioelectronics, 2012, 31, 151-156.	10.1	59
80	Electrochemiluminescence of CdSe quantum dots for highly sensitive competitive immunosensing. Sensors and Actuators B: Chemical, 2012, 168, 271-276.	7.8	23
81	CdSe quantum dots as labels for sensitive immunoassay of cancer biomarker proteins by electrogenerated chemiluminescence. Analyst, The, 2011, 136, 5197.	3.5	28
82	Facile Synthesis of PbSe Hollow Nanostructure Assemblies via a Solid/Liquidâ€Phase Chemical Route and Their Electrogenerated Chemiluminescence Properties. Chemistry - A European Journal, 2011, 17, 3739-3745.	3.3	14
83	A simple assay to amplify the electrochemical signal by the aptamer based biosensor modified with CdS hollow nanospheres. Biosensors and Bioelectronics, 2011, 26, 3531-3535.	10.1	23
84	A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination. Electrochimica Acta, 2011, 56, 7058-7063.	5.2	36
85	Immobilization of acetylcholinesterase on one-dimensional gold nanoparticles for detection of organophosphorous insecticides. Science China Chemistry, 2010, 53, 820-825.	8.2	33
86	A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosensors and Bioelectronics, 2010, 25, 2356-2360.	10.1	74
87	Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chemical Communications, 2010, 46, 1739.	4.1	90
88	Electrogenerated chemiluminescence from CdS hollow spheres composited with carbon nanofiber and its sensing application. Analyst, The, 2010, 135, 2579.	3.5	15
89	Fabrication of Hierarchical Nanostructure of Silver via a Surfactant-Free Mixed Solvents Route. Crystal Growth and Design, 2009, 9, 3941-3947.	3.0	52
90	Largeâ€Scale Synthesis of Singleâ€Crystalline RE ₂ O ₃ (RE=Y, Dy, Ho, Er) Nanobelts by a Solid–Liquidâ€Phase Chemical Route. Chemistry - A European Journal, 2008, 14, 1615-1620.	3.3	24

#	Article	IF	CITATIONS
91	Selfâ€Assembly of Two Different Hierarchical Nanostructures on Either Side of an Organic Supramolecular Film in One Step. Chemistry - A European Journal, 2008, 14, 6255-6259.	3.3	23
92	Crystal hierarchically splitting in growth of BaWO4 in positive cat–anionic microemulsion. Journal of Crystal Growth, 2008, 310, 4581-4586.	1.5	26
93	Anions bonded on the supramolecular hydrogel surface as the growth center of biominerals. Colloids and Surfaces B: Biointerfaces, 2008, 66, 84-89.	5.0	28
94	Uncommon hexagonal microtubule based gel from a simple trimesic amide. New Journal of Chemistry, 2008, 32, 2011.	2.8	29
95	Efficient Visible-Light-Induced Photocatalytic Activity of a 3D-Ordered Titania Hybrid Photocatalyst with a Core/Shell Structure of Dye-Containing Polymer/Titania. Journal of Physical Chemistry C, 2008, 112, 14973-14979.	3.1	42
96	Synthesis, Characterization, and Physicochemical Properties of Well-Coupled Y ₂ O ₃ Nanobeltâ^'Ag Nanocrystals Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 17893-17898.	3.1	9
97	Hierarchical Construction of Composite Hollow Structures of Co@CoO and Their Magnetic Behavior. Journal of Physical Chemistry C, 2008, 112, 9272-9277.	3.1	28
98	Synthesis and luminescence of CePO4and CePO4:Tb hollow and core–shell microspheres composed of single-crystal nanorods. Nanotechnology, 2007, 18, 415602.	2.6	21
99	Concentric Sub-micrometer-Sized Cables Composed of Ni Nanowires and Sub-micrometer-Sized Fullerene Tubes. Advanced Functional Materials, 2007, 17, 1124-1130.	14.9	13
100	Controllable Synthesis and Magnetic Properties of Cubic and Hexagonal Phase Nickel Nanocrystals. Advanced Materials, 2007, 19, 1096-1100.	21.0	134
101	Controllable Synthesis of CoO Nanosheets and their Magnetic Properties. ChemPhysChem, 2007, 8, 2091-2095.	2.1	29
102	Hollow nickel microspheres covered with oriented carbon nanotubes and its magnetic property. Carbon, 2006, 44, 211-215.	10.3	35
103	Structure, Magnetic and Ion-Exchange Properties of Self-Assembled Triaza-Copper(II)-Oxalate Hybrides Having Nanoscale One-Dimensional Channel. Journal of Nanoscience and Nanotechnology, 2006, 6, 3338-3342.	0.9	10
104	Coordination Driving Self-assembly of Gold Nanoparticles and Tetrapyridylporphine into Hollow Spheres. Chemistry Letters, 2005, 34, 1468-1469.	1.3	2
105	Template-Based CVD Synthesis of ZnS Nanotube Arrays. Chemical Vapor Deposition, 2005, 11, 250-253.	1.3	28
106	Conductive Carbon Nanofiber-Polymer Foam Structures. Advanced Materials, 2005, 17, 1999-2003.	21.0	426
107	A facile template-free route for synthesis of hollow hexagonal ZnS nano- and submicro-spheres. Nanotechnology, 2005, 16, 2908-2912.	2.6	47
108	ION SPUTTERING NANOSTRUCTURING CRYSTALLINE MgF2 SURFACE AND ITS ENERGY-DEPENDENT SURFACE ROUGHNESS. Modern Physics Letters B, 2005, 19, 157-162.	1.9	3