
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7975448/publications.pdf Version: 2024-02-01



LINDEN THU

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lyme Disease Pathogenesis. Current Issues in Molecular Biology, 2022, 42, 473-518.                                                                                                                      | 2.4  | 49        |
| 2  | Reply to Wormser. Journal of Infectious Diseases, 2022, 225, 1113-1113.                                                                                                                                 | 4.0  | 0         |
| 3  | Antiphospholipid autoantibodies in Lyme disease arise after scavenging of host phospholipids by<br>Borrelia burgdorferi. Journal of Clinical Investigation, 2022, 132, .                                | 8.2  | 12        |
| 4  | Interactions between <i>Borrelia burgdorferi</i> and its hosts across the enzootic cycle. Parasite<br>Immunology, 2021, 43, e12816.                                                                     | 1.5  | 13        |
| 5  | Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody. Journal of Clinical Investigation, 2021, 131, .                                   | 8.2  | 15        |
| 6  | Development of a capture sequencing assay for enhanced detection and genotyping of tick-borne pathogens. Scientific Reports, 2021, 11, 12384.                                                           | 3.3  | 9         |
| 7  | Genetic Background Amplifies the Effect of Immunodeficiency in Antibiotic Efficacy Against<br><i>Borrelia burgdorferi</i> . Journal of Infectious Diseases, 2021, 224, 345-350.                         | 4.0  | 6         |
| 8  | A selective antibiotic for Lyme disease. Cell, 2021, 184, 5405-5418.e16.                                                                                                                                | 28.9 | 33        |
| 9  | Host Metabolic Response in Early Lyme Disease. Journal of Proteome Research, 2020, 19, 610-623.                                                                                                         | 3.7  | 17        |
| 10 | Controlling Lyme Disease: New Paradigms for Targeting the Tick-Pathogen-Reservoir Axis on the Horizon. Frontiers in Cellular and Infection Microbiology, 2020, 10, 607170.                              | 3.9  | 3         |
| 11 | Innate Immune Memory to Repeated <i>Borrelia burgdorferi</i> Exposure Correlates with Murine In<br>Vivo Inflammatory Phenotypes. Journal of Immunology, 2020, 205, 3383-3389.                           | 0.8  | 6         |
| 12 | The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathogens, 2020, 16, e1008423.                                            | 4.7  | 13        |
| 13 | Design of a broadly reactive Lyme disease vaccine. Npj Vaccines, 2020, 5, 33.                                                                                                                           | 6.0  | 45        |
| 14 | Hydrogen peroxide-producing pyruvate oxidase from Lactobacillus delbrueckii is catalytically<br>activated by phosphotidylethanolamine. BMC Microbiology, 2020, 20, 128.                                 | 3.3  | 9         |
| 15 | Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes<br>tick vector. PLoS Pathogens, 2019, 15, e1007644.                                                  | 4.7  | 25        |
| 16 | Interspecies Inhibition of <i>Porphyromonas gingivalis</i> by Yogurt-Derived <i>Lactobacillus<br/>delbrueckii</i> Requires Active Pyruvate Oxidase. Applied and Environmental Microbiology, 2019, 85, . | 3.1  | 15        |
| 17 | Post-treatment Lyme disease symptoms score: Developing a new tool for research. PLoS ONE, 2019, 14, e0225012.                                                                                           | 2.5  | 10        |
| 18 | Anti-OspA DNA-Encoded Monoclonal Antibody Prevents Transmission of Spirochetes in Tick Challenge<br>Providing Sterilizing Immunity in Mice. Journal of Infectious Diseases, 2019, 219, 1146-1150.       | 4.0  | 13        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Magnetic Isolation of Phagosomes Containing Toll-Like Receptor Ligands. Methods in Molecular<br>Biology, 2018, 1690, 329-336.                                                                                      | 0.9  | 1         |
| 20 | Identifying Vancomycin as an Effective Antibiotic for Killing Borrelia burgdorferi. Antimicrobial<br>Agents and Chemotherapy, 2018, 62, .                                                                          | 3.2  | 18        |
| 21 | Using Tn-seq To Identify Pigmentation-Related Genes of Porphyromonas gingivalis: Characterization of the Role of a Putative Glycosyltransferase. Journal of Bacteriology, 2017, 199, .                             | 2.2  | 15        |
| 22 | Phagocytic Receptors Activate Syk and Src Signaling during Borrelia burgdorferi Phagocytosis.<br>Infection and Immunity, 2017, 85, .                                                                               | 2.2  | 16        |
| 23 | A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes<br>important for resistance against reactive oxygen and nitrogen species. PLoS Pathogens, 2017, 13,<br>e1006225. | 4.7  | 36        |
| 24 | Global Tnâ€seq analysis of carbohydrate utilization and vertebrate infectivity of <i>Borrelia<br/>burgdorferi</i> . Molecular Microbiology, 2016, 101, 1003-1023.                                                  | 2.5  | 47        |
| 25 | Lyme borreliosis. Nature Reviews Disease Primers, 2016, 2, 16090.                                                                                                                                                  | 30.5 | 530       |
| 26 | Diagnosis, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and<br>Babesiosis. JAMA - Journal of the American Medical Association, 2016, 315, 1767.                                     | 7.4  | 256       |
| 27 | Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release. Vaccine, 2016, 34, 4507-4513.                       | 3.8  | 23        |
| 28 | Lyme Disease. Annals of Internal Medicine, 2016, 164, ITC65.                                                                                                                                                       | 3.9  | 29        |
| 29 | Pre-exposure Prophylaxis With OspA-Specific Human Monoclonal Antibodies Protects Mice Against<br>Tick Transmission of Lyme Disease Spirochetes. Journal of Infectious Diseases, 2016, 214, 205-211.                | 4.0  | 26        |
| 30 | Identification and characterization of a minisatellite contained within a novel miniature<br>inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mobile DNA, 2015, 6, 18.                     | 3.6  | 7         |
| 31 | Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells.<br>Antimicrobial Agents and Chemotherapy, 2015, 59, 4616-4624.                                                     | 3.2  | 149       |
| 32 | Case 24-2015. New England Journal of Medicine, 2015, 373, 468-475.                                                                                                                                                 | 27.0 | 7         |
| 33 | Adaptor Protein-3–Mediated Trafficking of TLR2 Ligands Controls Specificity of Inflammatory<br>Responses but Not Adaptor Complex Assembly. Journal of Immunology, 2015, 195, 4331-4340.                            | 0.8  | 15        |
| 34 | Defining Essential Genes and Identifying Virulence Factors of Porphyromonas gingivalis by Massively<br>Parallel Sequencing of Transposon Libraries (Tn-seq). Methods in Molecular Biology, 2015, 1279, 25-43.      | 0.9  | 11        |
| 35 | Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Frontiers in Cellular and Infection Microbiology, 2014, 4, 63.                                               | 3.9  | 47        |
| 36 | Xenodiagnosis to Detect Borrelia burgdorferi Infection: A First-in-Human Study. Clinical Infectious<br>Diseases, 2014, 58, 937-945.                                                                                | 5.8  | 111       |

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Is there a place for xenodiagnosis in the clinic?. Expert Review of Anti-Infective Therapy, 2014, 12, 1307-1310.                                                                 | 4.4  | 5         |
| 38 | TRIF Mediates Toll-Like Receptor 2-Dependent Inflammatory Responses to Borrelia burgdorferi.<br>Infection and Immunity, 2013, 81, 402-410.                                       | 2.2  | 54        |
| 39 | Understanding Barriers to Borrelia burgdorferi Dissemination during Infection Using Massively<br>Parallel Sequencing. Infection and Immunity, 2013, 81, 2347-2357.               | 2.2  | 58        |
| 40 | A Two-Component System Regulates Hemin Acquisition in Porphyromonas gingivalis. PLoS ONE, 2013, 8, e73351.                                                                       | 2.5  | 27        |
| 41 | Lyme Disease. Annals of Internal Medicine, 2012, 157, ITC2-1.                                                                                                                    | 3.9  | 27        |
| 42 | Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine, 2012, 30, 6040-6046.         | 3.8  | 54        |
| 43 | Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC<br>Genomics, 2012, 13, 578.                                                          | 2.8  | 123       |
| 44 | Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature<br>Reviews Microbiology, 2012, 10, 87-99.                                     | 28.6 | 602       |
| 45 | Development of a baited oral vaccine for use in reservoir-targeted strategies against Lyme disease.<br>Vaccine, 2011, 29, 7818-7825.                                             | 3.8  | 41        |
| 46 | Nest box-deployed bait for delivering oral vaccines to white-footed mice. Ticks and Tick-borne Diseases, 2011, 2, 151-155.                                                       | 2.7  | 21        |
| 47 | Identification of interspecies interactions affecting <i>Porphyromonas gingivalis</i> virulence phenotypes. Journal of Oral Microbiology, 2011, 3, 8396.                         | 2.7  | 18        |
| 48 | Nod2 Suppresses Borrelia burgdorferi Mediated Murine Lyme Arthritis and Carditis through the<br>Induction of Tolerance. PLoS ONE, 2011, 6, e17414.                               | 2.5  | 34        |
| 49 | Role of Adrenomedullin in Lyme Disease. Infection and Immunity, 2010, 78, 5307-5313.                                                                                             | 2.2  | 2         |
| 50 | Development of a vaccinia virus based reservoir-targeted vaccine against Yersinia pestis. Vaccine, 2010, 28, 7683-7689.                                                          | 3.8  | 19        |
| 51 | Human Integrin $\hat{I}\pm3\hat{I}^21$ Regulates TLR2 Recognition of Lipopeptides from Endosomal Compartments. PLoS ONE, 2010, 5, e12871.                                        | 2.5  | 56        |
| 52 | Downstream Signals for MyD88-Mediated Phagocytosis of <i>Borrelia burgdorferi</i> Can Be Initiated by TRIF and Are Dependent on PI3K. Journal of Immunology, 2009, 183, 491-498. | 0.8  | 40        |
| 53 | Matrix Metalloproteinase 9 Plays a Key Role in Lyme Arthritis but Not in Dissemination of <i>Borrelia burgdorferi</i> . Infection and Immunity, 2009, 77, 2643-2649.             | 2.2  | 39        |
| 54 | Prevention of Lyme Disease and Other Tick-Borne Infections. Infectious Disease Clinics of North America, 2008, 22, 381-396.                                                      | 5.1  | 40        |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Distinct Roles for MyD88 and Toll-Like Receptors 2, 5, and 9 in Phagocytosis of <i>Borrelia burgdorferi</i> and Cytokine Induction. Infection and Immunity, 2008, 76, 2341-2351.                                                                                                 | 2.2 | 85        |
| 56 | Regulators of Expression of the Oligopeptide Permease A Proteins of Borrelia burgdorferi. Journal of<br>Bacteriology, 2007, 189, 2653-2659.                                                                                                                                      | 2.2 | 45        |
| 57 | Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface<br>protein A. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>7247-7252.                                                            | 7.1 | 43        |
| 58 | Role of novel protein kinase C isoforms in Lyme arthritis. Cellular Microbiology, 2007, 9, 1987-1996.                                                                                                                                                                            | 2.1 | 9         |
| 59 | Borrelia burgdorferi BBB07 interaction with integrin ? <sub>3</sub> ? <sub>1</sub> stimulates production of pro-inflammatory mediators in primary human chondrocytes. Cellular Microbiology, 2007, 10, 070908014424001-???.                                                      | 2.1 | 59        |
| 60 | Protective efficacy of an oral vaccine to reduce carriage of Borrelia burgdorferi (strain N40) in mouse and tick reservoirs. Vaccine, 2006, 24, 1949-1957.                                                                                                                       | 3.8 | 53        |
| 61 | Role of aggrecanase 1 in Lyme arthritis. Arthritis and Rheumatism, 2006, 54, 3319-3329.                                                                                                                                                                                          | 6.7 | 36        |
| 62 | Identification of a TLR-Independent Pathway for <i>Borrelia burgdorferi</i> -Induced Expression of<br>Matrix Metalloproteinases and Inflammatory Mediators through Binding to Integrin α3β1. Journal of<br>Immunology, 2006, 177, 657-664.                                       | 0.8 | 66        |
| 63 | MyD88 Deficiency Results in Tissue-Specific Changes in Cytokine Induction and Inflammation in<br>Interleukin-18-Independent Mice Infected with Borrelia burgdorferi. Infection and Immunity, 2006, 74,<br>1462-1470.                                                             | 2.2 | 49        |
| 64 | Induction of Host Matrix Metalloproteinases by Borrelia burgdorferi Differs in Human and Murine<br>Lyme Arthritis. Infection and Immunity, 2005, 73, 126-134.                                                                                                                    | 2.2 | 61        |
| 65 | Lyme Arthritis. Infectious Disease Clinics of North America, 2005, 19, 947-961.                                                                                                                                                                                                  | 5.1 | 26        |
| 66 | Phospholipid synthesis in Borrelia burgdorferi: BB0249 and BB0721 encode functional<br>phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology<br>(United Kingdom), 2004, 150, 391-397.                                                   | 1.8 | 36        |
| 67 | Borrelia burgdorferi- Induced Expression of Matrix Metalloproteinases from Human Chondrocytes<br>Requires Mitogen-Activated Protein Kinase and Janus Kinase/Signal Transducer and Activator of<br>Transcription Signaling Pathways. Infection and Immunity, 2004, 72, 2864-2871. | 2.2 | 51        |
| 68 | Analysis of Differences in the Functional Properties of the Substrate Binding Proteins of the Borrelia<br>burgdorferi Oligopeptide Permease ( opp ) Operon. Journal of Bacteriology, 2004, 186, 51-60.                                                                           | 2.2 | 43        |
| 69 | Evidence That the Variable Regions of the Central Domain of VIsE Are Antigenic during Infection with Lyme Disease Spirochetes. Infection and Immunity, 2002, 70, 4196-4203.                                                                                                      | 2.2 | 91        |
| 70 | Effects of Environmental Changes on Expression of the Oligopeptide Permease ( opp ) Genes of<br>Borrelia burgdorferi. Journal of Bacteriology, 2002, 184, 6198-6206.                                                                                                             | 2.2 | 50        |
| 71 | Intralaboratory reliability of serologic and urine testing for Lyme disease. American Journal of Medicine, 2001, 110, 217-219.                                                                                                                                                   | 1.5 | 101       |
| 72 | Functional testing of putative oligopeptide permease (Opp) proteins of Borrelia burgdorferi: a<br>complementation model in oppâ" Escherichia coli. Biochimica Et Biophysica Acta - Molecular Cell<br>Research, 2001, 1499, 222-231.                                              | 4.1 | 38        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Host metalloproteinases in Lyme arthritis. Arthritis and Rheumatism, 2001, 44, 1401-1410.                                                                                           | 6.7  | 65        |
| 74 | Two Controlled Trials of Antibiotic Treatment in Patients with Persistent Symptoms and a History of Lyme Disease. New England Journal of Medicine, 2001, 345, 85-92.                | 27.0 | 669       |
| 75 | Soluble CD14 Levels in the Serum, Synovial Fluid, and Cerebrospinal Fluid of Patients with Various<br>Stages of Lyme Disease. Journal of Infectious Diseases, 2000, 181, 1185-1188. | 4.0  | 33        |
| 76 | Host-pathogen interactions in the immunopathogenesis of Lyme disease. Journal of Clinical<br>Immunology, 1997, 17, 354-365.                                                         | 3.8  | 34        |