
Viji Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7974715/publications.pdf Version: 2024-02-01

VIII NAID

#	Article	IF	CITATIONS
1	Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Science Translational Medicine, 2015, 7, 316ra193.	12.4	304
2	A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nature Medicine, 2019, 25, 805-813.	30.7	260
3	Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genetics, 2015, 11, e1005352.	3.5	118
4	Integrative Biology Identifies Shared Transcriptional Networks in CKD. Journal of the American Society of Nephrology: JASN, 2014, 25, 2559-2572.	6.1	112
5	Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight, 2020, 5, .	5.0	108
6	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103
7	Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight, 2019, 4, .	5.0	73
8	Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 2961-2972.	6.1	65
9	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	5.2	64
10	A molecular morphometric approach to diabeticÂkidney disease can link structure toÂfunction and outcome. Kidney International, 2018, 93, 439-449.	5.2	54
11	Changes in Albuminuria But Not GFR are Associated with Early Changes in Kidney Structure in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2019, 30, 1049-1059.	6.1	45
12	Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney International, 2021, 100, 107-121.	5.2	44
13	Low levels of urinary epidermal growth factorÂpredict chronic kidney disease progressionÂin children. Kidney International, 2019, 96, 214-221.	5.2	43
14	ORAI channels are critical for receptor-mediated endocytosis of albumin. Nature Communications, 2017, 8, 1920.	12.8	39
15	Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. Journal of Lipid Research, 2018, 59, 173-183.	4.2	38
16	Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns. Diabetologia, 2016, 59, 1297-1306.	6.3	34
17	Correlation Between Baseline GFR and Subsequent Change in GFR in Norwegian Adults Without Diabetes and in Pima Indians. American Journal of Kidney Diseases, 2019, 73, 777-785.	1.9	34
18	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	8.2	34

Viji Nair

#	Article	IF	CITATIONS
19	Targeted Lipidomic and Transcriptomic Analysis Identifies Dysregulated Renal Ceramide Metabolism in a Mouse Model of Diabetic Kidney Disease. Journal of Proteomics and Bioinformatics, 2015, s14, .	0.4	30
20	Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatric Nephrology, 2018, 33, 1731-1739.	1.7	27
21	Urinary excretion of epidermal growth factor and rapid loss of kidney function. Nephrology Dialysis Transplantation, 2021, 36, 1882-1892.	0.7	23
22	Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2331-2351.	6.1	20
23	IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia, 2021, 64, 1690-1702.	6.3	16
24	Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight, 2018, 3, .	5.0	14
25	Urinary Proteomics Identifies Cathepsin D as a Biomarker of Rapid eGFR Decline in Type 1 Diabetes. Diabetes Care, 2022, 45, 1416-1427.	8.6	14
26	A role for NPY-NPY2R signaling in albuminuric kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15862-15873.	7.1	12
27	Molecular Characterization of Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1208-1221.	6.1	12
28	Glomerular endothelial cell-podocyte stresses and crosstalk in structurally normal kidney transplants. Kidney International, 2022, 101, 779-792.	5.2	11
29	Renin-angiotensin system inhibition reverses the altered triacylglycerol metabolic network in diabetic kidney disease. Metabolomics, 2021, 17, 65.	3.0	10
30	Methods for Assessing Longitudinal Biomarkers of Time-to-Event Outcomes in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1315-1323.	4.5	5
31	Decoding the genetic determinants of gene regulation in the kidney. Kidney International, 2019, 95, 16-18.	5.2	3
32	Estimated GFR Trajectories in Pediatric and Adult Nephrotic Syndrome: Results From the Nephrotic Syndrome Study Network (NEPTUNE). Kidney Medicine, 2020, 2, 407-417.	2.0	1