
David A Minton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7974226/publications.pdf Version: 2024-02-01

ΠΛΛΙΓΟ Α ΜΙΝΤΟΝ

#	Article	IF	CITATIONS
1	Bombardment history of the Moon constrained by crustal porosity. Nature Geoscience, 2022, 15, 531-535.	12.9	7
2	Impact-produced seismic shaking and regolith growth on asteroids 433 Eros, 2867 Åteins, and 25143 Itokawa. Icarus, 2020, 347, 113811.	2.5	17
3	Evidence for a Past Martian Ring from the Orbital Inclination of Deimos. Astrophysical Journal Letters, 2020, 896, L28.	8.3	6
4	Degradation of Small Simple and Large Complex Lunar Craters: Not a Simple Scale Dependence. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006273.	3.6	10
5	Three Dynamical Evolution Regimes for Coupled Ring-satellite Systems and Implications for the Formation of the Uranian Satellite Miranda. Astronomical Journal, 2019, 157, 30.	4.7	12
6	The equilibrium size-frequency distribution of small craters reveals the effects of distal ejecta on lunar landscape morphology. Icarus, 2019, 326, 63-87.	2.5	49
7	Resurfacing asteroids from thermally induced surface degradation. Icarus, 2019, 322, 1-12.	2.5	17
8	The length of lunar crater rays explained using secondary crater scaling. Icarus, 2018, 312, 231-246.	2.5	12
9	Resurfacing asteroids from YORP spin-up and failure. Icarus, 2018, 304, 162-171.	2.5	22
10	No Change in the Recent Lunar Impact Flux Required Based on Modeling of Impact Glass Spherule Age Distributions. Geophysical Research Letters, 2018, 45, 6805-6813.	4.0	16
11	An analytical model of crater count equilibrium. Icarus, 2017, 289, 134-143.	2.5	26
12	Heterogeneous impact transport on the Moon. Journal of Geophysical Research E: Planets, 2017, 122, 1158-1180.	3.6	41
13	An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos. Nature Geoscience, 2017, 10, 266-269.	12.9	49
14	Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry. Geophysical Research Letters, 2017, 44, 5326-5335.	4.0	28
15	Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances, 2016, 2, e1601658.	10.3	38
16	Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus, 2016, 271, 350-359.	2.5	74
17	Re-examining the main asteroid belt as the primary source of ancient lunar craters. Icarus, 2015, 247, 172-190.	2.5	49
18	Impact jetting as the origin of chondrules. Nature, 2015, 517, 339-341.	27.8	145

DAVID A MINTON

#	Article	IF	CITATIONS
19	Dynamic sublimation pressure and the catastrophic breakup of Comet ISON. Icarus, 2015, 258, 430-437.	2.5	41
20	Planetesimal-driven migration of terrestrial planet embryos. Icarus, 2014, 232, 118-132.	2.5	26
21	Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience, 2013, 6, 520-524.	12.9	66
22	Projectile remnants in central peaks of lunar impact craters. Nature Geoscience, 2013, 6, 435-437.	12.9	60
23	An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 2012, 485, 78-81.	27.8	345
24	SECULAR RESONANCE SWEEPING OF THE MAIN ASTEROID BELT DURING PLANET MIGRATION. Astrophysical Journal, 2011, 732, 53.	4.5	90
25	Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus, 2010, 207, 744-757.	2.5	144
26	A record of planet migration in the main asteroid belt. Nature, 2009, 457, 1109-1111.	27.8	143
27	The topographic limits of gravitationally bound, rotating sand piles. Icarus, 2008, 195, 698-704.	2.5	21
28	Prospects for the Habitability of OGLE-2006-BLG-109L. Astrophysical Journal, 2008, 683, L67-L70.	4.5	30
29	Assessing the Massive Young Sun Hypothesis to Solve the Warm Young Earth Puzzle. Astrophysical Journal, 2007, 660, 1700-1706.	4.5	49