
Eric Feraille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7974169/publications.pdf Version: 2024-02-01

FDIC FEDALLE

#	Article	IF	CITATIONS
1	Renal water transport in health and disease. Pflugers Archiv European Journal of Physiology, 2022, 474, 841-852.	2.8	6
2	Regulation of plasma volume in male lowlanders during 4 days of exposure to hypobaric hypoxia equivalent to 3500Âm altitude. Journal of Physiology, 2021, 599, 1083-1096.	2.9	24
3	Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Nephrology Dialysis Transplantation, 2021, 36, 60-68.	0.7	35
4	Dietary sodium intake does not alter renal potassium handling and blood pressure in healthy young males. Nephrology Dialysis Transplantation, 2021, , .	0.7	3
5	Plasma volume contraction reduces atrial natriuretic peptide after four days of hypobaric hypoxia exposure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R526-R531.	1.8	4
6	Activation of the Hypoxia-Inducible Factor Pathway Inhibits Epithelial Sodium Channel–Mediated Sodium Transport in Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2021, 32, 3130-3145.	6.1	9
7	Expression of claudin-8 is induced by aldosterone in renal collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2021, 321, F645-F655.	2.7	3
8	Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB Journal, 2020, 34, 2087-2104.	0.5	19
9	Timeâ€course of sodium transport along the nephron in nephrotic syndrome: The role of potassium. FASEB Journal, 2020, 34, 2408-2424.	0.5	7
10	Aldosterone controls primary cilium length and cell size in renal collecting duct principal cells. FASEB Journal, 2020, 34, 2625-2640.	0.5	8
11	Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nature Metabolism, 2020, 2, 732-743.	11.9	85
12	Interaction between Epithelial Sodium Channel γ-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct. Journal of the American Society of Nephrology: JASN, 2020, 31, 1009-1023.	6.1	20
13	Arginaseâ€II negatively regulates renal aquaporinâ€2 and water reabsorption. FASEB Journal, 2018, 32, 5520-5531.	0.5	9
14	Endothelinâ€1 mediates natriuresis but not polyuria during vitamin Dâ€induced acute hypercalcaemia. Journal of Physiology, 2017, 595, 2535-2550.	2.9	4
15	Primary cilia control the maturation of tubular lumen in renal collecting duct epithelium. American Journal of Physiology - Cell Physiology, 2017, 313, C94-C107.	4.6	3
16	Dietary sodium induces a redistribution of the tubular metabolic workload. Journal of Physiology, 2017, 595, 6905-6922.	2.9	34
17	Coordinated Control of ENaC and Na+,K+-ATPase in Renal Collecting Duct. Journal of the American Society of Nephrology: JASN, 2016, 27, 2554-2563.	6.1	48
18	lonic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3104-13.	7.1	42

Eric Feraille

#	Article	IF	CITATIONS
19	Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1608-1618.	6.1	53
20	Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle, 2014, 13, 3059-3075.	2.6	20
21	Epithelial sodium channel abundance is decreased by an unfolded protein response induced by hyperosmolality. Physiological Reports, 2014, 2, e12169.	1.7	14
22	Sodium Transport Is Modulated by p38 Kinase–Dependent Cross-Talk between ENaC and Na,K-ATPase in Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2014, 25, 250-259.	6.1	36
23	Spatially restricted hyaluronan production by <i>Has2</i> drives epithelial tubulogenesis in vitro. American Journal of Physiology - Cell Physiology, 2014, 307, C745-C759.	4.6	8
24	NADPH Oxidase 4 Deficiency Reduces Aquaporin-2 mRNA Expression in Cultured Renal Collecting Duct Principal Cells via Increased PDE3 and PDE4 Activity. PLoS ONE, 2014, 9, e87239.	2.5	22
25	Renal Ion-Translocating ATPases. , 2013, , 67-93.		0
26	Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. Autophagy, 2013, 9, 550-567.	9.1	56
27	Albuminuria induces a proinflammatory and profibrotic response in cortical collecting ducts via the 24p3 receptor. American Journal of Physiology - Renal Physiology, 2013, 305, F1053-F1063.	2.7	51
28	Autophagy is induced by hypertonic stress and is associated with microtubuleâ€dependent pericentrosomsal clustering of autolysosomes. FASEB Journal, 2013, 27, 728.2.	0.5	0
29	NADPH-Oxidase 4 Protects against Kidney Fibrosis during Chronic Renal Injury. Journal of the American Society of Nephrology: JASN, 2012, 23, 1967-1976.	6.1	131
30	Osmoprotective Transcription Factor NFAT5/TonEBP Modulates Nuclear Factor-κB Activity. Molecular Biology of the Cell, 2010, 21, 3459-3474.	2.1	98
31	Aquaporin-2 abundance in the renal collecting duct: new insights from cultured cell models. American Journal of Physiology - Renal Physiology, 2009, 297, F10-F18.	2.7	58
32	cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells. American Journal of Physiology - Renal Physiology, 2009, 296, F446-F457.	2.7	29
33	Inhibition of basal p38 or JNK activity enhances epithelial barrier function through differential modulation of claudin expression. American Journal of Physiology - Cell Physiology, 2009, 297, C775-C787.	4.6	64
34	Aldosterone Activates NF-κB in the Collecting Duct. Journal of the American Society of Nephrology: JASN, 2009, 20, 131-144.	6.1	95
35	The Physiology of the Collecting Ducts. , 2009, , 150-155.		0
36	Calcium-sensing Receptor Attenuates AVP-induced Aquaporin-2 Expression via a Calmodulin-dependent Mechanism. Journal of the American Society of Nephrology: JASN, 2008, 19, 109-116.	6.1	93

ERIC FERAILLE

#	Article	IF	CITATIONS
37	NF-κB Inhibits Sodium Transport via Down-regulation of SGK1 in Renal Collecting Duct Principal Cells. Journal of Biological Chemistry, 2008, 283, 25671-25681.	3.4	41
38	NF-κB Modulates Aquaporin-2 Transcription in Renal Collecting Duct Principal Cells. Journal of Biological Chemistry, 2008, 283, 28095-28105.	3.4	68
39	Sodium-Potassium-ATPase. , 2007, , 1-25.		0
40	Posttranscriptional control of aquaporin-2 abundance by vasopressin in renal collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2006, 290, F177-F187.	2.7	44
41	Tonicity-Responsive Enhancer Binding Protein Is an Essential Regulator of Aquaporin-2 Expression in Renal Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2006, 17, 1521-1531.	6.1	118
42	Inducible expression of Snail selectively increases paracellular ion permeability and differentially modulates tight junction proteins. American Journal of Physiology - Cell Physiology, 2005, 289, C1002-C1014.	4.6	71
43	Insulin potentiates AVP-induced AQP2 expression in cultured renal collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2005, 288, F334-F344.	2.7	58
44	Stimulation of Na+ transport by AVP is independent of PKA phosphorylation of the Na-K-ATPase in collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2005, 289, F1031-F1039.	2.7	23
45	Hyperaldosteronemia and Activation of the Epithelial Sodium Channel Are Not Required for Sodium Retention in Puromycin-Induced Nephrosis. Journal of the American Society of Nephrology: JASN, 2005, 16, 3642-3650.	6.1	64
46	Cytokines and Sodium Induce Protein Kinase A–Dependent Cell-Surface Na,K-ATPase Recruitment via Dissociation of NF-κB/IκB/Protein Kinase A Catalytic Subunit Complex in Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 2576-2585.	6.1	29
47	Dual Effects of Hypertonicity on Aquaporin-2 Expression in Cultured Renal Collecting Duct Principal Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 1571-1582.	6.1	86
48	Hormonal and Nonhormonal Mechanisms of Regulation of the Na,K-Pump in Collecting Duct Principal Cells. Seminars in Nephrology, 2005, 25, 312-321.	1.6	24
49	ERK1/2 Mediates Insulin Stimulation of Na,K-ATPase by Phosphorylation of the α-Subunit in Human Skeletal Muscle Cells. Journal of Biological Chemistry, 2004, 279, 25211-25218.	3.4	83
50	Extracellular Hypotonicity Increases Na,K-ATPase Cell Surface Expression via Enhanced Na+ Influx in Cultured Renal Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2004, 15, 2537-2547.	6.1	16
51	Shortâ€Term Aldosterone Action on Na,Kâ€ATPase Surface Expression. Annals of the New York Academy of Sciences, 2003, 986, 554-561.	3.8	38
52	Mechanism of Control of Na,Kâ€ATPase in Principal Cells of the Mammalian Collecting Duct. Annals of the New York Academy of Sciences, 2003, 986, 570-578.	3.8	40
53	Dual Influence of Aldosterone on AQP2 Expression in Cultured Renal Collecting Duct Principal Cells. Journal of Biological Chemistry, 2003, 278, 21639-21648.	3.4	50
54	Intracellular Na+Controls Cell Surface Expression of Na,K-ATPase via a cAMP-independent PKA Pathway in Mammalian Kidney Collecting Duct Cells. Molecular Biology of the Cell, 2003, 14, 2677-2688.	2.1	60

Eric Feraille

#	Article	IF	CITATIONS
55	Mechanisms of oedema in nephrotic syndrome: old theories and new ideas. Nephrology Dialysis Transplantation, 2003, 18, 454-456.	0.7	19
56	Regulatory volume increase is associated with p38 kinase-dependent actin cytoskeleton remodeling in rat kidney MTAL. American Journal of Physiology - Renal Physiology, 2003, 285, F336-F347.	2.7	48
57	Long Term Regulation of Aquaporin-2 Expression in Vasopressin-responsive Renal Collecting Duct Principal Cells. Journal of Biological Chemistry, 2002, 277, 10379-10386.	3.4	154
58	Arginine vasopressin modulates expression of neuronal NOS in rat renal medulla. American Journal of Physiology - Renal Physiology, 2002, 283, F559-F568.	2.7	40
59	Sodium-Potassium-Adenosinetriphosphatase-Dependent Sodium Transport in the Kidney: Hormonal Control. Physiological Reviews, 2001, 81, 345-418.	28.8	422
60	Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. American Journal of Physiology - Renal Physiology, 2001, 280, F675-F682.	2.7	320
61	Cyclic AMP Increases Cell Surface Expression of Functional Na,K-ATPase Units in Mammalian Cortical Collecting Duct Principal Cells. Molecular Biology of the Cell, 2001, 12, 255-264.	2.1	66
62	Short Term Effect of Aldosterone on Na,K-ATPase Cell Surface Expression in Kidney Collecting Duct Cells. Journal of Biological Chemistry, 2001, 276, 47087-47093.	3.4	70
63	Insulin- and Glucose-Induced Phosphorylation of the Na ⁺ ,K ⁺ -Adenosine Triphosphatase α-Subunits in Rat Skeletal Muscle. Endocrinology, 2001, 142, 3474-3482.	2.8	51
64	Increased Synthesis and AVP Unresponsiveness of Na,K-ATPase in Collecting Duct from Nephrotic Rats. Journal of the American Society of Nephrology: JASN, 2001, 12, 2241-2252.	6.1	30
65	Is Phosphorylation of the α1 Subunit at Ser-16 Involved in the Control of Na,K-ATPase Activity by Phorbol Ester–activated Protein Kinase C?. Molecular Biology of the Cell, 2000, 11, 39-50.	2.1	28
66	Simultaneous Phosphorylation of Ser11 and Ser18 in the α-Subunit Promotes the Recruitment of Na+,K+-ATPase Molecules to the Plasma Membrane. Biochemistry, 2000, 39, 9884-9892.	2.5	80
67	Glomerulonephritis and sodium retention: enhancement of Na+/K+-ATPase activity in the collecting duct is shared by rats with puromycin induced nephrotic syndrome and mice with spontaneous lupus-like glomerulonephritis. Nephrology Dialysis Transplantation, 1999, 14, 2192-2195.	0.7	14
68	Cell Shrinkage Triggers the Activation of Mitogen-activated Protein Kinases by Hypertonicity in the Rat Kidney Medullary Thick Ascending Limb of the Henle's Loop. Journal of Biological Chemistry, 1999, 274, 34103-34110.	3.4	77
69	Insulin-induced Stimulation of Na ⁺ ,K ⁺ -ATPase Activity in Kidney Proximal Tubule Cells Depends on Phosphorylation of the α-Subunit at Tyr-10. Molecular Biology of the Cell, 1999, 10, 2847-2859.	2.1	95
70	Dopamine-induced Endocytosis of Na+,K+-ATPase Is Initiated by Phosphorylation of Ser-18 in the Rat α Subunit and Is Responsible for the Decreased Activity in Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 1920-1927.	3.4	190
71	Effect of cAMP on the activity and the phosphorylation of Na+,K+-ATPase in rat thick ascending limb of Henle. Kidney International, 1999, 55, 1819-1831.	5.2	53
72	Protein kinase A induces recruitment of active Na+,K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells. Journal of Physiology, 1998, 511, 235-243.	2.9	64

ERIC FERAILLE

#	Article	IF	CITATIONS
73	Phosphorylation of the Catalyic α-Subunit Constitutes a Triggering Signal for Na+,K+-ATPase Endocytosis. Journal of Biological Chemistry, 1998, 273, 8814-8819.	3.4	146
74	Stimulation of ouabain-sensitive86Rb+uptake and Na+,K+-ATPase α-subunit phosphorylation by a cAMP-dependent signalling pathway in intact cells from rat kidney cortex. FEBS Letters, 1996, 396, 309-314.	2.8	28
75	Insulin Unresponsiveness of Tubular Monovalent Cation Transport during Fructose-Induced Hypertension in Rats. Clinical Science, 1995, 88, 293-299.	4.3	9