
Congpu Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7974109/publications.pdf Version: 2024-02-01

Сомери Ми

#	Article	IF	CITATIONS
1	Microwave Absorption Properties of CoS ₂ Nanocrystals Embedded into Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 28868-28875.	8.0	215
2	Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. Journal of Alloys and Compounds, 2017, 701, 870-874.	5.5	131
3	Fabrication of NiCo ₂ -Anchored Graphene Nanosheets by Liquid-Phase Exfoliation for Excellent Microwave Absorbers. ACS Applied Materials & Interfaces, 2017, 9, 12673-12679.	8.0	111
4	Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS2/MoS2 Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor. Electrochimica Acta, 2016, 212, 941-949.	5.2	93
5	Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 44478-44484.	8.0	89
6	Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2018, 29, 025704.	2.6	71
7	Atomically Resolving Polymorphs and Crystal Structures of In ₂ Se ₃ . Chemistry of Materials, 2019, 31, 10143-10149.	6.7	71
8	Carbon-Encapsulated Co 3 O 4 @CoO@Co Nanocomposites for Multifunctional Applications in Enhanced Long-life Lithium Storage, Supercapacitor and Oxygen Evolution Reaction. Electrochimica Acta, 2016, 220, 322-330.	5.2	68
9	Lateral Bilayer MoS ₂ –WS ₂ Heterostructure Photodetectors with High Responsivity and Detectivity. Advanced Optical Materials, 2019, 7, 1900815.	7.3	65
10	Twoâ€Ðimensionalâ€Germanium Phosphideâ€Reinforced Conductive and Biodegradable Hydrogel Scaffolds Enhance Spinal Cord Injury Repair. Advanced Functional Materials, 2021, 31, 2104440.	14.9	65
11	SnS 2 Nanoflakes Anchored Graphene obtained by Liquid Phase Exfoliation and MoS 2 Nanosheet Composites as Lithium and Sodium Battery Anodes. Electrochimica Acta, 2017, 227, 203-209.	5.2	57
12	Application of hard ceramic materials B4C in energy storage: Design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy, 2020, 75, 104947.	16.0	47
13	Photodetectors based on sensitized two-dimensional transition metal dichalcogenides—A review. Journal of Materials Research, 2017, 32, 4115-4131.	2.6	46
14	Facile synthesis and excellent electrochemical performance of CoP nanowire on carbon cloth as bifunctional electrode for hydrogen evolution reaction and supercapacitor. Science China Materials, 2017, 60, 1179-1186.	6.3	42
15	Grain-boundary-rich polycrystalline monolayer WS2 film for attomolar-level Hg2+ sensors. Nature Communications, 2021, 12, 3870.	12.8	42
16	Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel. Nanotechnology, 2018, 29, 235604.	2.6	41
17	Polypyrrole coated 3D flower MoS2 composites with tunable impedance for excellent microwave absorption performance. Journal of Alloys and Compounds, 2021, 888, 161487.	5.5	38
18	Two-dimensional periodic boundary conditions for demagnetization interactions in micromagnetics. Computational Materials Science, 2010, 49, 84-87.	3.0	35

Сондри Ми

#	Article	IF	CITATIONS
19	Well-controlled Core-shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption. Applied Surface Science, 2022, 591, 153176.	6.1	35
20	Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition. Journal of Materials Science and Technology, 2021, 75, 14-20.	10.7	34
21	Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis. Nanotechnology, 2019, 30, 035701.	2.6	32
22	Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites. Journal of Materials Science, 2017, 52, 13023-13032.	3.7	31
23	Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance. Materials Chemistry and Physics, 2020, 246, 122835.	4.0	31
24	Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties. Nanotechnology, 2018, 29, 405703.	2.6	30
25	Fabrication of multifunctional carbon encapsulated Ni@NiO nanocomposites for oxygen reduction, oxygen evolution and lithium-ion battery anode materials. Science China Materials, 2017, 60, 947-954.	6.3	29
26	Dynamic micromagnetic simulation of permalloy antidot array film. Physica B: Condensed Matter, 2010, 405, 1325-1328.	2.7	26
27	Ultrahigh-Gain and Fast Photodetectors Built on Atomically Thin Bilayer Tungsten Disulfide Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 42001-42010.	8.0	26
28	Facile-synthesized carbonaceous photonic crystals/magnetic particle nanohybrids with heterostructure as an excellent microwave absorber. Journal of Alloys and Compounds, 2018, 741, 814-820.	5.5	25
29	Microwave absorbing properties of two dimensional materials GeP5 enhanced after annealing treatment. Applied Physics Letters, 2019, 114, .	3.3	24
30	Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets. Applied Physics Letters, 2019, 115, .	3.3	23
31	Siliconâ€Phosphorusâ€Nanosheetsâ€Integrated 3Dâ€Printable Hydrogel as a Bioactive and Biodegradable Scaffold for Vascularized Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2101911.	7.6	23
32	Photoluminescence and Raman Spectra Oscillations Induced by Laser Interference in Annealing reated Monolayer WS ₂ Bubbles. Advanced Optical Materials, 2019, 7, 1801373.	7.3	21
33	Microwave Synthesized In ₂ S ₃ @CNTs with Excellent Properties inLithiumâ€lon Battery and Electromagnetic Wave Absorption. Chinese Journal of Chemistry, 2018, 36, 157-161.	4.9	20
34	Three dimensional bimetallic phosphides nanoneedle arrays as electrode materials for symmetric all-solid-state supercapacitor. Journal of Alloys and Compounds, 2019, 787, 618-624.	5.5	18
35	Enhanced electromagnetic wave absorption properties of NiCo2 nanoparticles interspersed with carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2019, 471, 185-191.	2.3	18
36	Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS ₂ Crystals. ACS Applied Materials & Interfaces, 2017, 9, 34071-34077.	8.0	17

Солдри Ми

#	Article	IF	CITATIONS
37	Layered porous materials indium triphosphide InP3 for high-performance flexible all-solid-state supercapacitors. Journal of Power Sources, 2019, 438, 227010.	7.8	17
38	Highâ€Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb ₂ O ₃ /Monolayer MoS ₂ Crystals Grown via Chemical Vapor Deposition. Advanced Optical Materials, 2020, 8, 2000168.	7.3	17
39	Effect of layer and stacking sequence in simultaneously grown 2H and 3R WS ₂ atomic layers. Nanotechnology, 2019, 30, 345203.	2.6	16
40	Dynamic susceptibility of onion in ferromagnetic elliptical nanoring. AIP Advances, 2016, 6, .	1.3	15
41	Improved photoresponse and stable photoswitching of tungsten disulfide single-layer phototransistor decorated with black phosphorus nanosheets. Journal of Materials Science, 2017, 52, 11506-11512.	3.7	15
42	Facile Synthesis of Carbon-Encapsulated Ni Nanoparticles Embedded into Porous Graphite Sheets as High-Performance Microwave Absorber. ACS Sustainable Chemistry and Engineering, 2018, 6, 16179-16185.	6.7	15
43	Static and dynamic characteristics of magnetism in permalloy oval nanoring by micromagnetic simulation. Journal of Magnetism and Magnetic Materials, 2019, 474, 301-304.	2.3	15
44	Flexible graphene/bacterial celluloses Janus structure film with excellent electromagnetic interference shielding and Joule heating performance. Materials Chemistry and Physics, 2022, 287, 126318.	4.0	15
45	Grain wall boundaries in centimeter-scale continuous monolayer WS ₂ film grown by chemical vapor deposition. Nanotechnology, 2018, 29, 255705.	2.6	14
46	Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber. Journal of Alloys and Compounds, 2020, 838, 155586.	5.5	14
47	Flexible Aramid Nanofiber/Bacterial Cellulose/Graphene Papers with Nickel Nanoparticles for Enhanced Electromagnetic Interference Shielding and Joule Heating Performance. ACS Applied Nano Materials, 2022, 5, 5589-5598.	5.0	14
48	Multifunctional Bacterial Cellulose Nanofibers/Polypyrrole (PPy) Composite Films for Joule Heating and Electromagnetic Interference Shielding. ACS Applied Electronic Materials, 2022, 4, 2552-2560.	4.3	14
49	Thermo-electric effect in a nano-sized crossed Permalloy/Cu junction under high bias current. Applied Physics Letters, 2013, 103, 132408.	3.3	13
50	Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2- decorated graphene nanosheets by liquid-phase exfoliation. Journal of Alloys and Compounds, 2019, 810, 151881.	5.5	13
51	One-step growth of wafer-scale monolayer tungsten disulfide via hydrogen sulfide assisted chemical vapor deposition. Applied Physics Letters, 2019, 115, .	3.3	13
52	Photodetection application of one-step synthesized wafer-scale monolayer MoS2 by chemical vapor deposition. 2D Materials, 2020, 7, 025020.	4.4	13
53	Enhanced microwave absorption properties of MnS2 microspheres interspersed with carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2020, 502, 166432.	2.3	13
54	High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS2 films. Biosensors and Bioelectronics, 2021, 194, 113596.	10.1	13

Солдри Ми

#	Article	IF	CITATIONS
55	One-Step Growth of Spatially Graded Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers with a Wide Span in Composition (from <i>x</i> = 0 to 1) at a Large Scale. ACS Applied Materials & Interfaces, 2019, 11, 20979-20986.	8.0	12
56	Calculations of three-dimensional magnetic excitations in permalloy nanostructures with vortex state. Journal of Magnetism and Magnetic Materials, 2010, 322, 2480-2484.	2.3	11
57	Pressure Effect on Order–Disorder Ferroelectric Transition in a Hydrogen-Bonded Metal–Organic Framework. Journal of Physical Chemistry Letters, 2020, 11, 9566-9571.	4.6	11
58	In Situ Grown Ultrafine RuO ₂ Nanoparticles on GeP ₅ Nanosheets as the Electrode Material for Flexible Planar Micro-Supercapacitors with High Specific Capacitance and Cyclability. ACS Applied Materials & Interfaces, 2021, 13, 47560-47571.	8.0	11
59	Highâ€Performance Aqueous Asymmetric Supercapacitors Based on Microwaveâ€Synthesized Selfâ€Supported NiCo 2 O 4 Nanograss and Carbideâ€Derived Carbon. ChemistrySelect, 2020, 5, 2865-2870.	1.5	10
60	High-performance flexible all-solid-state micro-supercapacitors based on two-dimensional InSe nanosheets. Journal of Power Sources, 2021, 482, 228987.	7.8	10
61	Accelerated Degradation of CrCl ₃ Nanoflakes Induced by Metal Electrodes: Implications for Remediation in Nanodevice Fabrication. ACS Applied Nano Materials, 2019, 2, 1597-1603.	5.0	9
62	Low current density spin-transfer torque effect assisted by in-plane microwave field. Applied Physics Letters, 2011, 99, 032502.	3.3	8
63	Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall. Journal of Applied Physics, 2014, 115, 013908.	2.5	8
64	Enhanced giant magnetoimpedance in heterogeneous nanobrush. Nanoscale Research Letters, 2012, 7, 506.	5.7	7
65	Two-dimensional layered materials InSe nanoflakes/carbon nanotubes composite for flexible all-solid-state supercapacitors. Journal of Materials Science, 2020, 55, 2947-2957.	3.7	7
66	Influence of van der Waals epitaxy on phase transformation behaviors in 2D heterostructure. Applied Physics Letters, 2020, 116, .	3.3	7
67	Faster 360° domain wall motion in nanostrip induced by spin-polarized current with out-of-plane magnetic field. Physica B: Condensed Matter, 2012, 407, 4584-4587.	2.7	6
68	Current-induced collective motion of 180° and 360° domain walls in double nanowires system. Journal of Magnetism and Magnetic Materials, 2013, 347, 124-130.	2.3	6
69	Micromagnetic simulation for detection of magnetic nanobeads by spin torque oscillator. Journal of Magnetism and Magnetic Materials, 2017, 432, 387-390.	2.3	6
70	Carbonaceous photonic crystals prepared by high-temperature/hydrothermal carbonization as high-performance microwave absorbers. Journal of Materials Science, 2019, 54, 14343-14353.	3.7	6
71	Room-temperature electric field modulation of magnetization in a helimagnet. Journal Physics D: Applied Physics, 2020, 53, 025001.	2.8	5
72	Ultrasensitive biochemical sensors based on controllably grown films of high-density edge-rich multilayer WS2 islands. Sensors and Actuators B: Chemical, 2022, 353, 131081.	7.8	5

Солдри Ми

#	Article	IF	CITATIONS
73	Broadband light absorption and photoresponse enhancement in monolayer WSe2 crystal coupled to Sb2O3 microresonators. Nano Research, 2022, 15, 4653-4660.	10.4	5
74	Direct one-step synthesis of CoFex@Co@C hybrids derived from a metal organic framework for a lightweight and high-performance microwave absorber. Nanotechnology, 2020, 31, 095703.	2.6	4
75	Pressure Control of the Structure and Multiferroicity in a Hydrogen-Bonded Metal–Organic Framework. Inorganic Chemistry, 0, , .	4.0	4
76	Fast Magnetization Switching by Linear Vertical Microwave-Assisted Spin-Transfer Torque. Journal of Nanoscience and Nanotechnology, 2012, 12, 7460-7463.	0.9	3
77	Magnetism and microwave absorption properties of two-dimensional layered ferromagnetic metal Fe3GeTe2. Journal of Materials Science, 2021, 56, 16524-16532.	3.7	3
78	Faster motion of double 360° domain walls system induced by spin-polarized current. Journal of Applied Physics, 2014, 115, 17D504.	2.5	2
79	Controllable growth of multilayered XSe ₂ (X = W and Mo) for nonlinear optical and optoelectronic applications. 2D Materials, 2022, 9, 015012.	4.4	2
80	Critical Current Density and Ferromagnetic Resonance Affected by Perpendicular Anisotropy in Spin Valve. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	0
81	Photoemission oscillation in epitaxially grown van der Waals β-In ₂ Se ₃ WS ₂ heterobilayer bubbles*. Chinese Physics B, 2021, 30, 117901.	1.4	0