
Zhenyu Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7973656/publications.pdf Version: 2024-02-01

ZHENVU XINC

#	Article	IF	CITATIONS
1	Lithiothermicâ€Synchronous Construction of Moâ€Li ₂ Sâ€Graphene Nanocomposites for Highâ€Energy Li ₂ S//SiC Battery. Advanced Functional Materials, 2022, 32, .	14.9	5
2	A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries. Chemical Engineering Journal, 2022, 433, 133527.	12.7	13
3	Crack-free single-crystal LiNi0.83Co0.10Mn0.07O2 as cycling/thermal stable cathode materials for high-voltage lithium-ion batteries. Electrochimica Acta, 2021, 365, 137380.	5.2	96
4	Mo ₂ C Electrocatalysts for Kinetically Boosting Polysulfide Conversion in Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45651-45660.	8.0	7
5	Research Progress of Key Materials for Sodium-selenium Batteries. Acta Chimica Sinica, 2021, 79, 641.	1.4	0
6	CoFe Alloy-Decorated Interlayer with a Synergistic Catalytic Effect Improves the Electrochemical Kinetics of Polysulfide Conversion. ACS Applied Materials & Interfaces, 2021, 13, 57193-57203.	8.0	24
7	Honokiol inhibits <i>Vibrio harveyi</i> hemolysin virulence by reducing its haemolytic activity. Aquaculture Research, 2020, 51, 206-214.	1.8	5
8	Extraction of Lithium from Single-Crystalline Lithium Manganese Oxide Nanotubes Using Ammonium Peroxodisulfate. IScience, 2020, 23, 101768.	4.1	10
9	Delayed Phase Transition and Improved Cycling/Thermal Stability by Spinel LiNi _{0.5} Mn _{1.5} O ₄ Modification for LiCoO ₂ Cathode at High Voltages. ACS Applied Materials & Interfaces, 2020, 12, 27339-27349.	8.0	41
10	Consolidating Lithiothermicâ€Ready Transition Metals for Li ₂ Sâ€Based Cathodes. Advanced Materials, 2020, 32, e2002403.	21.0	59
11	LiCoO2@LiNi0.45Al0.05Mn0.5O2 as high-voltage lithium-ion battery cathode materials with improved cycling performance and thermal stability. Electrochimica Acta, 2019, 327, 135018.	5.2	30
12	Carbon-pore-sheathed cobalt nanoseeds: An exceptional and durable bifunctional catalyst for zinc-air batteries. Nano Energy, 2019, 65, 104051.	16.0	43
13	"Ship in a Bottle―Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting Rechargeable Zn–Air Batteries. ACS Nano, 2019, 13, 7062-7072.	14.6	120
14	Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K ₂ Ti ₆ O ₁₃ Microscaffolds. ACS Applied Materials & Interfaces, 2018, 10, 15542-15547.	8.0	209
15	Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy, 2018, 54, 1-9.	16.0	103
16	Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium. Nano Energy, 2018, 50, 229-244.	16.0	108
17	Development of novel polyethylene air-cathode material for microbial fuel cells. Energy, 2018, 155, 763-771.	8.8	13
18	A Brief Review of Metallothermic Reduction Reactions for Materials Preparation. Small Methods, 2018, 2, 1800062.	8.6	42

ZHENYU XING

#	Article	IF	CITATIONS
19	Influence of enhanced carbon crystallinity of nanoporous graphite on the cathode performance of microbial fuel cells. Carbon, 2017, 115, 271-278.	10.3	50
20	Hard–Soft Composite Carbon as a Longâ€Cycling and Highâ€Rate Anode for Potassiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700324.	14.9	471
21	Mechanism of Naâ€lon Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. Advanced Energy Materials, 2017, 7, 1602894.	19.5	332
22	Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries. Nature Energy, 2017, 2, .	39.5	349
23	Identify the Removable Substructure in Carbon Activation. Chemistry of Materials, 2017, 29, 7288-7295.	6.7	51
24	Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4343-4351.	8.0	200
25	A 1.8 V Aqueous Supercapacitor with a Bipolar Assembly of Ion-Exchange Membranes as the Separator. Journal of the Electrochemical Society, 2016, 163, A1853-A1858.	2.9	42
26	Hard Carbon Microspheres: Potassiumâ€lon Anode Versus Sodiumâ€lon Anode. Advanced Energy Materials, 2016, 6, 1501874.	19.5	814
27	Nitrogenâ€Đoped Nanoporous Graphenic Carbon: An Efficient Conducting Support for O ₂ Cathode. ChemNanoMat, 2016, 2, 692-697.	2.8	38
28	Anode Materials: Hard Carbon Microspheres: Potassiumâ€ion Anode Versus Sodiumâ€ion Anode (Adv.) Tj ETQq	0 0 0 rgBT 19.5	/Oyerlock 10
29	High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO _{<i>x</i>} Doping. ACS Energy Letters, 2016, 1, 395-401.	17.4	172
30	A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Materials, 2016, 2, 63-68.	18.0	141
31	Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment. Chemical Science, 2016, 7, 2138-2144.	7.4	72
32	Unlock High Capacity of Hard Carbon Anodes in Na-Ion Batteries By Increasing Structural Defects Via Phosphorus Doping. ECS Meeting Abstracts, 2016, , .	0.0	0
33	A High-Power Symmetric Na-Ion Pseudocapacitor. ECS Meeting Abstracts, 2016, , .	0.0	0
34	Carbon Electrodes for Potassium-Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
35	A Highâ€Power Symmetric Naâ€ion Pseudocapacitor. Advanced Functional Materials, 2015, 25, 5778-5785.	14.9	105
36	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 2015, 1, 516-522.	11.3	202

ZHENYU XING

#	Article	IF	CITATIONS
37	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 2015, 11, 600-610.	16.0	100
38	Direct fabrication of nanoporous graphene from graphene oxide by adding a gasification agent to a magnesiothermic reaction. Chemical Communications, 2015, 51, 1969-1971.	4.1	39
39	Aqueous-solution-processed hybrid solar cells with good thermal and morphological stability. Solar Energy Materials and Solar Cells, 2013, 109, 254-261.	6.2	26
40	Aqueous-Solution-Processed Hybrid Solar Cells from Poly(1,4-naphthalenevinylene) and CdTe Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 2919-2923.	8.0	32