List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/797349/publications.pdf Version: 2024-02-01

		117625	155660
129	3,894	34	55
papers	citations	h-index	g-index
132	132	132	3353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	14.6	227
2	Conductive PVDF/PA6/CNTs Nanocomposites Fabricated by Dual Formation of Cocontinuous and Nanodispersion Structures. Macromolecules, 2008, 41, 5339-5344.	4.8	215
3	Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polymer Chemistry, 2013, 4, 5726.	3.9	181
4	Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO ₂ with Long Poly(methyl methacrylate) Chains and the in Situ Formation of Janus SiO ₂ Nanoparticles Anchored Exclusively at the Interface. ACS Applied Materials & Interfaces, 2017, 9, 14358-14370.	8.0	112
5	Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers. ACS Applied Materials & Interfaces, 2014, 6, 4447-4457.	8.0	103
6	Rheology of Nanosilica-Compatibilized Immiscible Polymer Blends: Formation of a "Heterogeneous Network―Facilitated by Interfacially Anchored Hybrid Nanosilica. Macromolecules, 2017, 50, 9494-9506.	4.8	97
7	Stable Co-Continuous PLA/PBAT Blends Compatibilized by Interfacial Stereocomplex Crystallites: Toward Full Biodegradable Polymer Blends with Simultaneously Enhanced Mechanical Properties and Crystallization Rates. Macromolecules, 2021, 54, 2852-2861.	4.8	93
8	Miscibility and Double Glass Transition Temperature Depression of Poly(<scp>l</scp> -lactic acid) (PLLA)/Poly(oxymethylene) (POM) Blends. Macromolecules, 2013, 46, 5806-5814.	4.8	92
9	PLLA/ABS Blends Compatibilized by Reactive Comb Polymers: Double <i>T</i> _g Depression and Significantly Improved Toughness. ACS Sustainable Chemistry and Engineering, 2015, 3, 2542-2550.	6.7	92
10	A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. Journal of Materials Chemistry A, 2021, 9, 1795-1802.	10.3	92
11	Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity. ACS Applied Materials & Interfaces, 2018, 10, 8411-8416.	8.0	87
12	lonic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Advanced Composites and Hybrid Materials, 2021, 4, 574-583.	21.1	86
13	Compatibilization of Immiscible Polymer Blends Using <i>in Situ</i> Formed Janus Nanomicelles by Reactive Blending. ACS Macro Letters, 2015, 4, 1398-1403.	4.8	81
14	Compatibilization by Homopolymer: Significant Improvements in the Modulus and Tensile Strength of PPC/PMMA Blends by the Addition of a Small Amount of PVAc. ACS Applied Materials & Interfaces, 2009, 1, 1650-1655.	8.0	74
15	Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Composites Science and Technology, 2017, 138, 98-105.	7.8	70
16	Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. Journal of Materials Chemistry A, 2019, 7, 4903-4912.	10.3	61
17	Shape Memory Performance of Thermoplastic Polyvinylidene Fluoride/Acrylic Copolymer Blends Physically Cross-Linked by Tiny Crystals. ACS Applied Materials & Interfaces, 2012, 4, 4825-4831.	8.0	60
18	Dramatic Improvement in Toughness of PLLA/PVDF Blends: the Effect of Compatibilizer Architectures. ACS Sustainable Chemistry and Engineering, 2016, 4, 4480-4489.	6.7	55

#	Article	IF	CITATIONS
19	Synthesis of Reactive Comb Polymers and Their Applications as a Highly Efficient Compatibilizer in Immiscible Polymer Blends. Industrial & Engineering Chemistry Research, 2015, 54, 2081-2089.	3.7	50
20	Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. Journal of Physical Chemistry B, 2016, 120, 9240-9252.	2.6	50
21	Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. Polymer, 2017, 132, 353-361.	3.8	50
22	lonic liquid grafted polyethersulfone nanofibrous membrane as recyclable adsorbent with simultaneous dye, heavy metal removal and antibacterial property. Chemical Engineering Journal, 2022, 428, 132111.	12.7	49
23	Reactive splicing compatibilization of immiscible polymer blends: Compatibilizer synthesis in the melt state and compatibilizer architecture effects. Polymer, 2019, 185, 121952.	3.8	44
24	High-performance biosourced poly(lactic acid)/polyamide 11 blends with controlled salami structure. Polymer International, 2014, 63, 1094-1100.	3.1	43
25	Crystal Orientation Behavior and Shape-Memory Performance of Poly(vinylidene fluoride)/Acrylic Copolymer Blends. Journal of Physical Chemistry B, 2012, 116, 1256-1264.	2.6	42
26	Stretchable Ionic-Liquid-Based Gel Polymer Electrolytes for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2017, 56, 12456-12463.	3.7	42
27	Morphological investigations on the nanostructured poly(vinylidene fluoride)/polyamide 11 blends by high-shear processing. European Polymer Journal, 2006, 42, 3202-3211.	5.4	37
28	Enhanced Crystallization Rate of Poly(<scp>l</scp> -lactic acid) (PLLA) by Polyoxymethylene (POM) Fragment Crystals in the PLLA/POM Blends with a Small Amount of POM. Journal of Physical Chemistry B, 2014, 118, 7167-7176.	2.6	36
29	Nanostructured Poly(vinylidene fluoride)/Ionic Liquid Composites: Formation of Organic Conductive Nanodomains in Polymer Matrix. Journal of Physical Chemistry C, 2015, 119, 21155-21164.	3.1	36
30	Poly(vinylidene fluoride) Nanocomposites with Simultaneous Organic Nanodomains and Inorganic Nanoparticles. Macromolecules, 2016, 49, 1026-1035.	4.8	36
31	Durable Anti-Superbug Polymers: Covalent Bonding of Ionic Liquid onto the Polymer Chains. Biomacromolecules, 2017, 18, 4364-4372.	5.4	36
32	A dense packing structure constructed by flake and spherical graphite: Simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites. Composites Communications, 2020, 19, 25-29.	6.3	36
33	Reactive Compatibilization: Formation of Double-Grafted Copolymers by In Situ Binary Grafting and Their Compatibilization Effect. ACS Applied Materials & Interfaces, 2017, 9, 33091-33099.	8.0	35
34	Nanocystalline cellulose reinforced sulfonated fluorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ionics, 2016, 297, 29-35.	2.7	34
35	Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion. Langmuir, 2017, 33, 1368-1374.	3.5	34
36	Towards Flexible Dielectric Materials with High Dielectric Constant and Low Loss: PVDF Nanocomposites with both Homogenously Dispersed CNTs and Ionic Liquids Nanodomains. Polymers, 2017, 9, 562.	4.5	34

#	Article	IF	CITATIONS
37	Copolymers containing two types of reactive groups: New compatibilizer for immiscible PLLA/PA11 polymer blends. Polymer, 2019, 177, 139-148.	3.8	34
38	Fabrication of TiO ₂ /WO ₃ Composite Nanofibers by Electrospinning and Photocatalystic Performance of the Resultant Fabrics. Industrial & Engineering Chemistry Research, 2016, 55, 80-85.	3.7	33
39	Immobilization of Ionic Liquids onto the Poly(vinylidene fluoride) by Electron Beam Irradiation. Industrial & Engineering Chemistry Research, 2015, 54, 9351-9359.	3.7	32
40	Arrested Elongated Interface with Small Curvature by the Simultaneous Reactive Compatibilization and Stereocomplexation. Macromolecules, 2020, 53, 10664-10674.	4.8	32
41	Investigations on the morphologies and properties of epoxy/acrylic rubber/nanoclay nanocomposites for adhesive films. Composites Science and Technology, 2014, 93, 46-53.	7.8	31
42	Crystallization-Modulated Nanoporous Polymeric Materials with Hierarchical Patterned Surfaces and 3D Interpenetrated Internal Channels. ACS Applied Materials & Interfaces, 2015, 7, 6946-6954.	8.0	31
43	Morphologies and Crystallization Behaviors in Melt-Miscible Crystalline/Crystalline Blends with Close Melting Temperatures but Different Crystallization Kinetics. Macromolecules, 2015, 48, 8515-8525.	4.8	30
44	Organization of Oriented Lamellar Structures in a Miscible Crystalline/Crystalline Polymer Blend under Uniaxial Compression Flow near the Melting Temperature. Macromolecules, 2007, 40, 2751-2759.	4.8	29
45	Synthesis and properties of flame-retardant poly(vinyl alcohol)/pseudo-boehmite nanocomposites with high transparency and enhanced refractive index. Polymer Degradation and Stability, 2014, 99, 53-60.	5.8	29
46	Toward an Optically Transparent, Antielectrostatic, and Robust Polymer Composite: Morphology and Properties of Polycarbonate/Ionic Liquid Composites. Industrial & Engineering Chemistry Research, 2014, 53, 4304-4311.	3.7	29
47	Glass-Fiber Networks as an Orbit for Ions: Fabrication of Excellent Antistatic PP/GF Composites with Extremely Low Organic Salt Loadings. ACS Applied Materials & Interfaces, 2017, 9, 18305-18313.	8.0	28
48	Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. Journal of Membrane Science, 2020, 604, 118040.	8.2	25
49	Ionic Liquid-Grafted Polyamide 6 by Radiation-Induced Grafting: New Strategy To Prepare Covalently Bonded Ion-Containing Polymers and their Application as Functional Fibers. ACS Applied Materials & Interfaces, 2019, 11, 5462-5475.	8.0	24
50	Strain-gauge sensoring composite films with self-restoring water-repellent properties for monitoring human movements. Composites Communications, 2018, 7, 23-29.	6.3	23
51	Ionic Liquids Incorporating Polyamide 6: Miscibility and Physical Properties. Polymers, 2018, 10, 562.	4.5	23
52	Silver nanoparticle-immobilized porous POM/PLLA nanofibrous membranes: efficient catalysts for reduction of 4-nitroaniline. RSC Advances, 2017, 7, 7460-7468.	3.6	22
53	Banded spherulite templated three-dimensional interpenetrated nanoporous materials. RSC Advances, 2014, 4, 43351-43356.	3.6	21
54	Ionic liquid grafted polyamide 6 as porous membrane materials: Enhanced water flux and heavy metal adsorption. Applied Surface Science, 2019, 481, 1435-1441.	6.1	21

#	Article	IF	CITATIONS
55	Interfacially located nanoparticles: Barren nanorods versus polymer grafted nanorods. Composites Part B: Engineering, 2020, 198, 108153.	12.0	21
56	Polymer Crystallites with Few Tie Molecules from a Miscible Polymer Blend. Macromolecules, 2008, 41, 3396-3400.	4.8	20
57	Oriented crystallization of poly(<scp>L</scp> ″actic acid) in uniaxially oriented blends with poly(vinylidene fluoride). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1376-1389.	2.1	19
58	"Lotus-effect―tape: imparting superhydrophobicity to solid materials with an electrospun Janus composite mat. RSC Advances, 2016, 6, 17215-17221.	3.6	19
59	Interfacial designing of PP/GF composites by binary incorporation of MAH-g-PP and lithium bis(trifloromethanesulfonyl)imide: Towards high strength composites with excellent antistatic performance. Composites Science and Technology, 2018, 156, 247-253.	7.8	19
60	Mechanism of Reactive Compatibilization of PLLA/PVDF Blends Investigated by Scanning Transmission Electron Microscopy with Energy-Dispersive X-ray Spectrometry and Electron Energy Loss Spectroscopy. ACS Applied Polymer Materials, 2019, 1, 815-824.	4.4	18
61	Role of Interfacial Postreaction during Thermal Treatment: Toward a Better Understanding of the Toughness of PLLA/Reactive Elastomer Blends. Macromolecules, 2022, 55, 1321-1331.	4.8	18
62	Micropore Geometry Manipulation by Macroscopic Deformation Based on Shape Memory Effect in Porous PLLA Membrane and its Enhanced Separation Performance. ACS Applied Materials & Interfaces, 2017, 9, 43415-43419.	8.0	17
63	Increased gt Conformer Contents of PLLA Molecular Chains Induced by Li-TFSI in Melt: Another Route to Promote PLLA Crystallization. Macromolecules, 2019, 52, 7065-7072.	4.8	17
64	Stabilizing Polymeric Interface by Janus Nanosheet. Macromolecular Rapid Communications, 2020, 41, e2000392.	3.9	17
65	Switchable Isotropic/Anisotropic Wettability and Programmable Droplet Transportation on a Shape-Memory Honeycomb. ACS Applied Materials & Interfaces, 2020, 12, 42314-42320.	8.0	17
66	Electrospun nanofibers with both surface nanopores and internal interpenetrated nanochannels for oil absorption. RSC Advances, 2016, 6, 33781-33788.	3.6	16
67	Poly(oxymethylene)/poly(butylene succinate) blends: Miscibility, crystallization behaviors and mechanical properties. Polymer, 2019, 167, 40-47.	3.8	16
68	Toward simultaneous compatibilization and nucleation of fully biodegradabe nanocomposites: Effect of nanorod-assisted interfacial stereocomplex crystals in immiscible polymer blends. Composites Part B: Engineering, 2022, 234, 109708.	12.0	16
69	Isolated Protective Char Layers by Nanoclay Network: Significantly Improved Flame Retardancy and Mechanical Performance of TPV/MH Composites by Small Amount of Nanoclay. Industrial & Engineering Chemistry Research, 2015, 54, 6912-6921.	3.7	15
70	Determining the optimal molecular architecture for reactive splicing compatibilization: Toward a better understanding of reactive polymer processing. Polymer, 2020, 208, 122948.	3.8	15
71	Anti-biofouling microfiltration membranes based on 1-vinyl-3-butylimidazolium chloride grafted PVDF with improved bactericidal properties and vitro biocompatibility. Materials Science and Engineering C, 2021, 118, 111411.	7.3	15
72	Synchronous toughening and strengthening of the immiscible polylactic acid/thermoplastic polyurethane (PLLA/TPU) blends via the interfacial compatibilization with Janus nanosheets. Composites Science and Technology, 2022, 227, 109611.	7.8	15

#	Article	IF	CITATIONS
73	Fabrication of PLLA with High Ductility and Transparence by Blending with Tiny Amount of PVDF and Compatibilizers. Macromolecular Materials and Engineering, 2019, 304, 1900316.	3.6	14
74	Investigation on the Crystallization Behaviors of Polyoxymethylene with a Small Amount of Ionic Liquid. Nanomaterials, 2019, 9, 206.	4.1	14
75	Physical and Rheological Properties of Maleic Anhydride-Incorporated PVDF: Does MAH Act as a Physical Crosslinking Point for PVDF Molecular Chains?. ACS Omega, 2019, 4, 21540-21547.	3.5	14
76	Multifunctional porous materials with simultaneous high water flux, antifouling and antibacterial performances from ionic liquid grafted polyethersulfone. Polymer, 2021, 212, 123183.	3.8	14
77	Disordered graphite platelets in polypropylene (PP) matrix by spherical alumina particles: Increased thermal conductivity of the PP/flake graphite composites. Composites Communications, 2021, 27, 100856.	6.3	14
78	PROP: an in situ cascade polymerization method for the facile synthesis of polyesters. Polymer Chemistry, 2017, 8, 1953-1962.	3.9	13
79	Shape memory polymers with interconnected nanopores and high mechanical strength. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 125-130.	2.1	13
80	Crystal Forms and Microphase Structures of Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Physically and Chemically Incorporated with Ionic Liquids. Macromolecules, 2019, 52, 385-394.	4.8	13
81	In-situ grafting of carboxylic acid terminated poly(methyl methacrylate) onto ethylene-glycidyl methacrylate copolymers:One-pot strategy to compatibilize immiscible poly(vinylidene fluoride)/ low density polyethylene blends. Polymer, 2019, 160, 162-169.	3.8	13
82	Reversible transition between adhesive and antiadhesive performances by stretching/recovery on superhydrophobic TPU/CNTs composite membrane surface. Applied Surface Science, 2019, 471, 900-903.	6.1	13
83	Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS Applied Materials & Interfaces, 2022, 14, 11016-11027.	8.0	13
84	Local Grafting of Ionic Liquid in Poly(vinylidene fluoride) Amorphous Region and the Subsequent Microphase Separation Behavior in Melt. Macromolecular Rapid Communications, 2016, 37, 1559-1565.	3.9	12
85	Investigation on Molecular Structures of Electron-Beam-Irradiated Low-Density Polyethylene by Rheology Measurements. Industrial & Engineering Chemistry Research, 2018, 57, 4298-4310.	3.7	12
86	Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends. RSC Advances, 2019, 9, 2189-2198.	3.6	12
87	Hierarchically porous membranes with multiple channels: Fabrications in PVDF/PMMA/PLLA blend and enhanced separation performance. Journal of Membrane Science, 2022, 643, 120065.	8.2	12
88	Solvent annealing induced phase separation and dewetting in PMMA/SAN blend films: composition dependence. Polymer Chemistry, 2013, 4, 3943.	3.9	11
89	TPU Inclusion Complex Modified POM: Fabrication of High Performance POM Composites with Both Excellent Stiffness–Toughness Balance and Thermostability. Industrial & Engineering Chemistry Research, 2016, 55, 2983-2991.	3.7	11
90	Sub-100 nm Cocontinuous Structures Fabricated in Immiscible Commodity Polymer Blend with Extremely Low Volume/Viscosity Ratio. ACS Applied Polymer Materials, 2019, 1, 124-129.	4.4	11

#	Article	IF	CITATIONS
91	Interâ€spherulitic/innerâ€spherulitic localization of PBSU during crystallization of PVDF in PVDF / PBSU blend. Journal of Polymer Science, 2020, 58, 1699-1706.	3.8	11
92	Ionic liquid induced supramolecular self-assembly of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films with enhanced conductivity and tunable nanoporosity. Macromolecular Research, 2013, 21, 456-461.	2.4	10
93	Selective solvent annealing induced phase separation and dewetting in PMMA/SAN blend ultrathin films. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1243-1251.	2.1	10
94	Nano-porous shape memory membrane: Fabrication based on double bicontinuous structures in ternary blend and pore-size manipulation by macroscopic deformation. Applied Surface Science, 2019, 480, 276-280.	6.1	10
95	Observation of Double Gyroid and Hexagonally Perforated Lamellar Phases in ABCBA Pentablock Terpolymers. Macromolecules, 2020, 53, 9641-9653.	4.8	10
96	Encapsulation of inorganic nanoparticles in a block copolymer vesicle wall driven by the interfacial instability of emulsion droplets. Polymer Chemistry, 2021, 12, 4184-4192.	3.9	10
97	Strengthened interface as flame retarding belt: Compatibilized PLLA/PP blends by reactive boehmite nanorods. Polymer, 2021, 228, 123879.	3.8	10
98	Selectively located aluminum hydroxide in rubber phase in a TPV: Towards to a halogen-free flame retardant thermoplastic elastomer with ultrahigh flexibility. Polymer Composites, 2015, 36, 1258-1265.	4.6	9
99	Semicrystalline Polymer Binary-Phase Structure Templated Quasi-Block Graft Copolymers. Journal of Physical Chemistry B, 2017, 121, 7508-7518.	2.6	9
100	Porous POM/PLLA membranes decorated with gold nanoparticles as flexible and efficient plasmonic substrates for surface-enhanced Raman scattering. Applied Surface Science, 2019, 498, 143856.	6.1	9
101	Graft ratio: Quantitative measurement and direct evidence for its blending sequence dependence during reactive compatibilization in PVDF/PLLA. Polymer, 2019, 185, 121970.	3.8	9
102	Simultaneously Grafting Poly(lactic acid) (PLLA) and Polyethylene (PE) Chains onto a Reactive SG Copolymer: Formation of Supertough PLLA/PE Blends by Reactive Processing. Industrial & Engineering Chemistry Research, 2020, 59, 12106-12113.	3.7	9
103	Influence of the Mole Ratio of the Interacting to the Stabilizing Portion (RI/S) in Hyperbranched Polymers on CaCO3 Crystallization: Synthesis of Highly Monodisperse Microspheres. Crystal Growth and Design, 2012, 12, 4053-4059.	3.0	8
104	Stability and structure evolution in PMMA/SAN bilayer films upon solvent annealing. Colloid and Polymer Science, 2017, 295, 181-188.	2.1	8
105	Radiation Induced Surface Modification of Nanoparticles and Their Dispersion in the Polymer Matrix. Nanomaterials, 2020, 10, 2237.	4.1	8
106	Porous Nanocomposites with Monolayer Nano-SiO2 Coated Skeleton from Interfacial Nanoparticle-Anchored Cocontinuous Polymer Blends. ACS Applied Polymer Materials, 2020, 2, 5735-5742.	4.4	8
107	Microsphere with narrow nanopores: Fabrication in PVDF/PMMA/PLLA blend and enhanced adsorption/separation performances. Applied Surface Science, 2021, 566, 150673.	6.1	8
108	Effect of PMMA Molecular Weight on Its Localization during Crystallization of PVDF in Their Blends. Polymers, 2021, 13, 4138.	4.5	8

#	Article	IF	CITATIONS
109	Block-assembling: a new strategy for fabricating conductive nanoporous materials from nanocomposites based on a melt-miscible crystalline/crystalline blend and MWCNTs. Journal of Materials Chemistry C, 2015, 3, 8510-8518.	5.5	7
110	Synergistic effects of two types of ionic liquids on the dispersion of multiwalled carbon nanotubes in ethylene-vinyl acetate elastomer: preparation and characterization of flexible conductive composites. Polymer International, 2017, 66, 1708-1715.	3.1	7
111	Parallel-stripe structures in PLLA/POM blend films. Polymer, 2017, 128, 100-107.	3.8	6
112	Thermoplastic shape memory composites with enhanced recovery stress and recovery ratio based on double roles of PVAc-g-GO. Composites Communications, 2019, 13, 52-56.	6.3	6
113	Improvement of PLLA Ductility by Blending with PVDF: Localization of Compatibilizers at Interface and Its Glycidyl Methacrylate Content Dependency. Polymers, 2020, 12, 1846.	4.5	6
114	Reactive Comb Polymer Compatibilized Immiscible PVDF/PLLA Blends: Effects of the Main Chain Structure of Compatibilizer. Polymers, 2020, 12, 526.	4.5	6
115	Programmable Transition between Adhesive/Anti-Adhesive Performances on Porous PVDF Spheres Supported by Shape Memory PLLA. Polymers, 2022, 14, 374.	4.5	6
116	Fabrication of PLLA with High Ductility and Transparence by Blending with Tiny Amount of PVDF and Compatibilizers. Macromolecular Materials and Engineering, 2019, 304, 1970030.	3.6	5
117	Interfacial stability of compatibilizers dictated by the thermodynamic interactions in an immiscible system and the effects of micelles on the crystallization of PLLA. Journal of Polymer Science, 2020, 58, 372-382.	3.8	5
118	Effects of side chains in compatibilizers on interfacial adhesion of immiscible PLLA/ABS blends. Materials Chemistry and Physics, 2021, 262, 124219.	4.0	5
119	Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. ACS Omega, 2022, 7, 12772-12778.	3.5	5
120	Direct evidence for the validity of assessing reaction extent by torque spectrum during reactive processing. Polymer, 2020, 197, 122499.	3.8	4
121	The synthesis of functional Janus nanosheets as compatibilizers for the immiscible polyamide 6 /polystyrene (PA6/PS): Formation of the nanosilica monolayer at the interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128788.	4.7	4
122	Panther chameleon-inspired, continuously-regulated, high-saturation structural color of a reflective grating on the nano-patterned surface of a shape memory polymer. Nanoscale Advances, 0, , .	4.6	4
123	Highly Ordered Hierarchical Poly(ethylene oxide)-b-polystyrene/Organoclay Nanocomposites. ACS Applied Materials & Interfaces, 2011, 3, 1613-1619.	8.0	3
124	Nanohybrid Polymeric Nucleating Agents: In Situ Decorated Carbon Nanotubes and Serial Nucleation Behaviors in a Meltâ€Miscible Crystalline/Crystalline Blend. Macromolecular Chemistry and Physics, 2015, 216, 1801-1807.	2.2	3
125	Composition fluctuation intensity effect on the stability of polymer films. RSC Advances, 2016, 6, 69715-69719.	3.6	3
126	Crosslinked network formation beyond graft copolymers in transparent bisphenol-A Polycarbonate/Poly(methyl methacrylate) blends catalyzed by bis(trifluoromethanesulphonyl)imide based organic salts. Polymer, 2021, 223, 123700.	3.8	3

#	Article	IF	CITATIONS
127	TiO2 Nanotube Arrays: Fabricated by Soft–Hard Template and the Grain Size Dependence of Field Emission Performance. Nanoscale Research Letters, 2017, 12, 593.	5.7	2
128	Wrinkled CNTs@PLLA Composite Membranes for Enhanced Separation Performance. Membranes, 2022, 12, 278.	3.0	1
129	Enhancement of strength and toughness of bio-nanocomposites with good transparency and heat resistance by reactive processing. IScience, 2022, 25, 104560.	4.1	Ο