Shao-Gang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7973089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Graphene–Pure‧ulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 625-631.	21.0	908
2	A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 2015, 11, 356-365.	16.0	526
3	3D Grapheneâ€Foam–Reducedâ€Grapheneâ€Oxide Hybrid Nested Hierarchical Networks for Highâ€Performanc Li–S Batteries. Advanced Materials, 2016, 28, 1603-1609.	e 21.0	497
4	3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries. Advanced Materials, 2016, 28, 3374-3382.	21.0	488
5	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	16.0	183
6	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 56-61.	18.0	157
7	A trilayer separator with dual function for high performance lithium–sulfur batteries. Journal of Power Sources, 2016, 301, 179-186.	7.8	117
8	Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14359-14366.	10.3	96
9	A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale, 2015, 7, 5592-5597.	5.6	92
10	Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. Journal of Energy Chemistry, 2020, 45, 135-141.	12.9	69
11	Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li–S batteries with high sulfur loading. Journal of Materials Chemistry A, 2019, 7, 11298-11304.	10.3	68
12	From interlayer to lightweight capping layer: Rational design of mesoporous TiO2 threaded with CNTs for advanced Li–S batteries. Carbon, 2019, 143, 523-530.	10.3	64
13	APPLICATION OF HIGH RESOLUTION TRANSMISSIONX-RAY TOMOGRAPHY IN MATERIAL SCIENCE. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 897.	0.3	63
14	Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Science Advances, 2022, 8, eabm6624.	10.3	50
15	Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron. Materials Characterization, 2018, 144, 155-165.	4.4	40
16	Correlation of Materials Property and Performance with Internal Structures Evolvement Revealed by Laboratory X-ray Tomography. Materials, 2018, 11, 1795.	2.9	38
17	Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. International Journal of Energy Production and Management, 2016, 3, 33-40.	3.7	35
18	A 3D Multifunctional Architecture for Lithium–Sulfur Batteries with High Areal Capacity. Small Methods, 2018, 2, 1800067.	8.6	33

Shao-Gang Wang

#	Article	IF	CITATIONS
19	Nanoporous Aluminum by Galvanic Replacement: Dealloying and Inward-Growth Plating. Journal of the Electrochemical Society, 2018, 165, C492-C496.	2.9	33
20	lce-templated porous tungsten and tungsten carbide inspired by natural wood. Journal of Materials Science and Technology, 2020, 45, 187-197.	10.7	33
21	Cast defects induced sample-size dependency on compressive strength and fracture toughness of Mg–Cu–Ag–Gd bulk metallic glass. Intermetallics, 2012, 29, 123-132.	3.9	30
22	Fibrous ZrO2-mullite porous ceramics fabricated by a hydratable alumina based aqueous gel-casting process. Ceramics International, 2019, 45, 8824-8831.	4.8	25
23	Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton. ACS Applied Nano Materials, 2019, 2, 1111-1119.	5.0	22
24	Porous TiAl3 intermetallics with symmetrical graded pore-structure fabricated by leaching space holder and thermal explosion process. Intermetallics, 2018, 95, 144-149.	3.9	21
25	A novel aqueous gel-casting for fabricating Al2O3-bonded fibrous mullite ceramics. Journal of Alloys and Compounds, 2019, 811, 152009.	5.5	21
26	Mg-based bulk metallic glasses: Elastic properties and their correlations with toughness and glass transition temperature. Journal of Materials Research, 2011, 26, 923-933.	2.6	16
27	Strengthening and toughening of Mg-based bulk metallic glass via in-situ formed B2-type AgMg phase. Journal of Non-Crystalline Solids, 2013, 379, 40-47.	3.1	11
28	Bulk Metallic Glasses: MRI Compatibility and Its Correlation with Magnetic Susceptibility. Journal of Materials Science and Technology, 2016, 32, 496-504.	10.7	10
29	Evolution of a bicontinuous structure in peritectic melting: The simplest form of dealloying. Physical Review Materials, 2019, 3, .	2.4	7
30	Tomographical Study of the Effect of Graphite on Properties of Cast Iron. Steel Research International, 2018, 89, 1800086.	1.8	6
31	Synthesis and mechanical properties of porous metals with inverted dealloying structure. Scripta Materialia, 2022, 210, 114483.	5.2	6
32	MRI compatibility of several early transition metal based alloys and its influencing factors. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 377-385.	3.4	4
33	3D morphology characterization of graphite and its effect on the thermal conductivity of vermicular graphite iron. International Journal of Materials Research, 2019, 110, 591-599.	0.3	3
34	Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals. MRS Communications, 2019, 9, 971-978.	1.8	1
35	Quantitative Characterization of Graphite Morphology in Cast Iron from 3D Perspective. Journal of Physics: Conference Series, 2020, 1622, 012124.	0.4	0