Davide Grassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7972473/publications.pdf

Version: 2024-02-01

117625 144013 3,887 119 34 57 citations h-index g-index papers 131 131 131 3081 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ice giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	3.7	4
2	Moist convection drives an upscale energy transfer at Jovian high latitudes. Nature Physics, 2022, 18, 357-361.	16.7	18
3	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
4	The current weather and climate of Mars: 12†years of atmospheric monitoring by the Planetary Fourier Spectrometer on Mars Express. Icarus, 2021, 353, 113406.	2.5	34
5	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	8.1	25
6	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
7	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
8	Acute and Long Term Effects of a Nutraceutical Combination on Lipid Profile, Glucose Metabolism and Vascular Function in Patients with Dyslipidaemia with and Without Cigarette Smoking. High Blood Pressure and Cardiovascular Prevention, 2021, 28, 483-491.	2.2	2
9	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
10	Evidence for Multiple Ferrelâ€Like Cells on Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095651.	4.0	18
11	Similarities and Differences of Global Dust Storms in MY 25, 28, and 34. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006104.	3.6	20
12	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	2.5	23
13	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	2.6	5
14	Turbulence Power Spectra in Regions Surrounding Jupiter's South Polar Cyclones From Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006096.	3.6	8
15	Drug Induced Liver Injury (DILI) due to variability in monacolin K content in Red Yeast Rice (RYR): An expert opinion. European Journal of Integrative Medicine, 2020, 37, 101164.	1.7	3
16	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
17	Jupiter's Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006399.	3.6	13
18	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16

#	Article	lF	Citations
19	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24
20	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	1.7	5
21	Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	1.7	39
22	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
23	Global maps of Venus nightside mean infrared thermal emissions obtained by VIRTIS on Venus Express. Icarus, 2020, 343, 113683.	2.5	3
24	Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophysical Journal, 2020, 900, 74.	4.5	20
25	Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data. Atmosphere, 2019, 10, 584.	2.3	9
26	Scientific goals and technical challenges of the MAJIS imaging spectrometer for the JUICE mission. , 2019, , .		2
27	H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 2019, 329, 132-139.	2.5	11
28	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	2.5	15
29	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
30	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
31	Metabolic effect of berberine–silymarin association: A metaâ€analysis of randomized, doubleâ€blind, placeboâ€controlled clinical trials. Phytotherapy Research, 2019, 33, 862-870.	5.8	37
32	Metabolic effect of berberine–silymarin association: A meta-analysis of randomized, double-blind, placebo-controlled clinical trials. , 2019, 33, 862.		1
33	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
34	Towards a Global Unified Model of Europa's Tenuous Atmosphere. Space Science Reviews, 2018, 214, 1.	8.1	36
35	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
36	Characterization of dust activity on Mars from MY27 to MY32 by PFS-MEX observations. Icarus, 2018, 310, 32-47.	2.5	28

#	Article	IF	Citations
37	Properties of a Martian local dust storm in Atlantis Chaos from OMEGA/MEX data. Icarus, 2018, 300, 1-11.	2.5	7
38	Temperature dependence of collisional induced absorption (CIA) bands of CO2 with implications for Venus' atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204, 242-249.	2.3	4
39	Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno. Astronomical Journal, 2018, 156, 246.	4.7	5
40	Venus Atmospheric Thermal Structure and Radiative Balance. Space Science Reviews, 2018, 214, 1.	8.1	47
41	Juno observations of spot structures and a split tail in lo-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
42	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3.6	24
43	Atmospheric Physics and Atmospheres of Solar-System Bodies. Astrophysics and Space Science Library, 2018, , 135-199.	2.7	0
44	ACS/TIRVIM: Calibration and first results. , 2018, , .		4
45	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	8.1	91
46	The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, 294, 124-155.	2.5	34
47	Multipleâ€wavelength sensing of Jupiter during the Juno mission's first perijove passage. Geophysical Research Letters, 2017, 44, 4607-4614.	4.0	14
48	Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 2017, 356, 821-825.	12.6	229
49	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
50	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	4.0	20
51	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
52	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
53	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
54	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13

#	Article	IF	CITATIONS
55	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	2.3	8
56	Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band $25 \hat{A}^{\circ}$ - $55 \hat{A}^{\circ} N$. Planetary and Space Science, 2017, 144, 16-31.	1.7	3
57	Solar energetic particle interactions with the Venusian atmosphere. Annales Geophysicae, 2016, 34, 595-608.	1.6	19
58	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
59	Planetary space weather: scientific aspects and future perspectives. Journal of Space Weather and Space Climate, 2016, 6, A31.	3.3	38
60	No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express Visible observations. Icarus, 2016, 277, 395-400.	2.5	30
61	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
62	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
63	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
64	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
65	Removal of atmospheric features in near infrared spectra by means of principal component analysis and target transformation on Mars: I. Method. Icarus, 2015, 253, 51-65.	2.5	13
66	Preparing EChO space mission: laboratory simulation of planetary atmospheres. , 2014, , .		0
67	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
68	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	1.7	31
69	Carbon dioxide opacity of the Venus׳ atmosphere. Planetary and Space Science, 2014, 103, 347-354.	1.7	17
70	The Venus nighttime atmosphere as observed by the VIRTISâ€M instrument. Average fields from the complete infrared data set. Journal of Geophysical Research E: Planets, 2014, 119, 837-849.	3.6	32
71	JIRAM, the Jovian Infrared Auroral Mapper. , 2014, , 271-324.		4
72	Experimental CO2 absorption coefficients at high pressure and high temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 21-28.	2.3	27

#	Article	IF	Citations
73	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
74	Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus, 2012, 221, 395-404.	2.5	47
75	Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus, 2012, 217, 561-569.	2.5	74
76	Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus, 2012, 217, 640-647.	2.5	59
77	Tidal variations in the Martian lower atmosphere inferred from Mars Express Planetary Fourier Spectrometer temperature data. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	3
78	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110
79	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
80	The light curve of asteroid 2867 Steins measured by VIRTIS-M during the Rosetta fly-by. Planetary and Space Science, 2010, 58, 1066-1076.	1.7	11
81	Jupiter's hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers. Planetary and Space Science, 2010, 58, 1265-1278.	1.7	18
82	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10
83	Thermal structure of Venusian nighttime mesosphere as observed by VIRTISâ€Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	41
84	Evidence for Mg-rich carbonates on Mars from a 3.9 ν m absorption feature. Icarus, 2009, 203, 58-65.	2.5	49
85	The impact of Martian aerosols on the retrieval of temperature profiles from PFS measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 1908-1925.	2.3	0
86	Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover. Journal of Geophysical Research, 2009, 114 , .	3.3	7
87	PFS/MEX observations of the condensing CO2 south polar cap of Mars. Icarus, 2008, 197, 386-402.	2.5	20
88	Retrieval of air temperature profiles in the Venusian mesosphere from VIRTISâ€M data: Description and validation of algorithms. Journal of Geophysical Research, 2008, 113, .	3.3	32
89	Spatial variability of carbon monoxide in Venus' mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements. Journal of Geophysical Research, 2008, 113, .	3.3	48
90	Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. Journal of Geophysical Research, 2008, 113 , .	3.3	33

#	Article	IF	CITATIONS
91	JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter. Astrobiology, 2008, 8, 613-622.	3.0	17
92	First detection of hydroxyl in the atmosphere of Venus. Astronomy and Astrophysics, 2008, 483, L29-L33.	5.1	86
93	Tracking the edge of the south seasonal polar cap of Mars. Planetary and Space Science, 2007, 55, 1319-1327.	1.7	10
94	The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX). Planetary and Space Science, 2007, 55, 1346-1357.	1.7	20
95	Spatial variability, composition and thickness of the seasonal north polar cap of Mars in mid-spring. Planetary and Space Science, 2007, 55, 1328-1345.	1.7	13
96	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
97	Results of measurements with the Planetary Fourier Spectrometer onboard Mars Express: Clouds and dust at the end of southern summer. A comparison with OMEGA images. Cosmic Research, 2006, 44, 305-316.	0.6	10
98	The planetary fourier spectrometer (PFS) onboard the European Venus Express mission. Planetary and Space Science, 2006, 54, 1298-1314.	1.7	39
99	First observations of the planetary Fourier spectrometer at Mars. Advances in Space Research, 2005, 36, 1074-1083.	2.6	3
100	The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 2005, 53, 963-974.	1.7	151
101	Calibration of the Planetary Fourier Spectrometer short wavelength channel. Planetary and Space Science, 2005, 53, 975-991.	1.7	43
102	Planetary Fourier spectrometer data analysis: Fast radiative transfer models. Planetary and Space Science, 2005, 53, 1035-1042.	1.7	40
103	Water clouds and dust aerosols observations with PFS MEX at Mars. Planetary and Space Science, 2005, 53, 1065-1077.	1.7	32
104	PFS-MEX observation of ices in the residual south polar cap of Mars. Planetary and Space Science, 2005, 53, 1089-1095.	1.7	22
105	Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express Mission. Planetary and Space Science, 2005, 53, 1017-1034.	1.7	51
106	Calibration of the Planetary Fourier Spectrometer long wavelength channel. Planetary and Space Science, 2005, 53, 993-1007.	1.7	43
107	The Martian atmosphere above great volcanoes: Early planetary Fourier spectrometer observations. Planetary and Space Science, 2005, 53, 1053-1064.	1.7	22
108	Analysis of non-LTE emissions at in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO. Planetary and Space Science, 2005, 53, 1079-1087.	1.7	35

#	Article	IF	CITATIONS
109	A Martian PFS average spectrum: Comparison with ISO SWS. Planetary and Space Science, 2005, 53, 1043-1052.	1.7	9
110	Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 \hat{l} /4m CO2 band: input to MIRA. Advances in Space Research, 2005, 35, 8-13.	2.6	3
111	PFS: an effective instrument for the study of martian environment. Advances in Space Research, 2004, 34, 1696-1701.	2.6	2
112	PFS for Mars Express: A new approach to study Martian atmosphere. Advances in Space Research, 2002, 29, 131-142.	2.6	15
113	Martian winter atmosphere at north high latitudes: Mariner 9 IRIS data revisited. Advances in Space Research, 2002, 29, 151-156.	2.6	11
114	Water vapour abundance in Martian atmosphere from revised Mariner 9 IRIS data. Advances in Space Research, 2002, 29, 157-162.	2.6	9
115	A software simulator for the Planetary Fourier Spectrometer on board the Mars express mission. Advances in Space Research, 2002, 29, 169-174.	2.6	O
116	The Martian atmosphere in the region of the great volcanoes: Mariner 9 IRIS data revisited. Planetary and Space Science, 2001, 49, 977-992.	1.7	21
117	IRIS Mariner 9 data revisited: water and dust daily cycles. Planetary and Space Science, 2001, 49, 1331-1346.	1.7	20
118	IRIS Mariner 9 data revisited:. Planetary and Space Science, 2000, 48, 569-576.	1.7	12
119	IRIS Mariner 9 data revisited:. Planetary and Space Science, 2000, 48, 577-598.	1.7	12