Ryan C Hurley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7972144/publications.pdf

Version: 2024-02-01

567281 526287 41 778 15 27 citations h-index g-index papers 41 41 41 605 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials. Physical Review Letters, 2016, 117, 098005.	7.8	109
2	spam: Software for Practical Analysis of Materials. Journal of Open Source Software, 2020, 5, 2286.	4.6	97
3	Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity. Journal of the Mechanics and Physics of Solids, 2014, 63, 154-166.	4.8	82
4	In situ grain fracture mechanics during uniaxial compaction of granular solids. Journal of the Mechanics and Physics of Solids, 2018, 112, 273-290.	4.8	57
5	The role of particle morphology on concrete fracture behaviour: A meso-scale modelling approach. Cement and Concrete Research, 2020, 134, 106096.	11.0	46
6	Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates. Granular Matter, 2015, 17, 287-295.	2.2	32
7	Dynamic Inter-Particle Force Inference in Granular Materials: Method and Application. Experimental Mechanics, 2016, 56, 217-229.	2.0	30
8	Particle rotations and energy dissipation during mechanical compression of granular materials. Journal of the Mechanics and Physics of Solids, 2019, 129, 19-38.	4.8	30
9	Characterization of the crystal structure, kinematics, stresses and rotations in angular granular quartz during compaction. Journal of Applied Crystallography, 2018, 51, 1021-1034.	4.5	26
10	Constitutive Model for Brittle Granular Materials Considering Competition between Breakage and Dilation. Journal of Engineering Mechanics - ASCE, 2020, 146, .	2.9	23
11	Multi-scale mechanics of granular solids from grain-resolved X-ray measurements. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170491.	2.1	21
12	Failures in sand in reduced gravity environments. Journal of the Mechanics and Physics of Solids, 2018, 113, 1-12.	4.8	19
13	An in-situ study of stress evolution and fracture growth during compression of concrete. International Journal of Solids and Structures, 2019, 168, 26-40.	2.7	19
14	Linking initial microstructure and local response during quasistatic granular compaction. Physical Review E, 2017, 96, 012905.	2.1	18
15	Continuum modeling of rate-dependent granular flows in SPH. Computational Particle Mechanics, 2017, 4, 119-130.	3.0	16
16	InÂSitu X-ray Tomography and 3D X-ray Diffraction Measurements of Cemented Granular Materials. Jom, 2020, 72, 18-27.	1.9	16
17	Force chains as the link between particle and bulk friction angles in granular material. Geophysical Research Letters, 2014, 41, 8862-8869.	4.0	15
18	A rateâ€dependent constitutive model for brittle granular materials based on breakage mechanics. Journal of the American Ceramic Society, 2019, 102, 5524-5534.	3.8	15

#	Article	IF	CITATIONS
19	The influence of packing structure and interparticle forces on ultrasound transmission in granular media. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16234-16242.	7.1	13
20	Failure Modeling and Sensitivity Analysis of Ceramics Under Impact. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	13
21	An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints. Computational Mechanics, 2017, 60, 235-252.	4.0	10
22	Models for the behavior of boron carbide in extreme dynamic environments. Journal of the American Ceramic Society, 2022, 105, 3043-3061.	3.8	10
23	Quantifying local rearrangements in three-dimensional granular materials: Rearrangement measures, correlations, and relationship to stresses. Physical Review E, 2022, 105, 014904.	2.1	10
24	Small Scale Models Subjected to Buried Blast Loading Part I: Floorboard Accelerations and Related Passenger Injury Metrics with Protective Hulls. Experimental Mechanics, 2014, 54, 539-555.	2.0	9
25	Near-field non-radial motion generation from underground chemical explosions in jointed granite. Geophysical Journal International, 2018, 212, 25-41.	2.4	7
26	Quantifying particle-scale 3D granular dynamics during rapid compaction from time-resolved $\langle i \rangle$ in situ $\langle i \rangle$ 2D x-ray images. Journal of Applied Physics, 2021, 129, .	2.5	6
27	Quantifying the hierarchy of structural and mechanical length scales in granular systems. Extreme Mechanics Letters, 2022, 51, 101590.	4.1	6
28	An Integrative Model for the Dynamic Behavior of Brittle Materials Based on Microcracking and Breakage Mechanics. Journal of Dynamic Behavior of Materials, 2020, 6, 472-488.	1.7	5
29	Small Scale Models Subjected to Buried Blast Loading Part II: Frame Accelerations with Hulls and Additional Mitigation Methods. Experimental Mechanics, 2014, 54, 857-869.	2.0	3
30	Fragmentation and granular transition of ceramics for high rate loading. Journal of the American Ceramic Society, 2022, 105, 3062-3080.	3.8	3
31	Grain-Scale Measurements During Low Velocity Impact in Granular Media. , 2015, , 291-317.		2
32	Force measurements in stiff, 3D, opaque granular materials. EPJ Web of Conferences, 2017, 140, 02006.	0.3	2
33	Micromechanics of Granular Media Characterised Using X-Ray Tomography and 3DXRD. Trends in Mathematics, 2018, , 169-176.	0.1	2
34	Strength of Granular Materials in Transient and Steady State Rapid Shear. Procedia Engineering, 2015, 103, 237-245.	1.2	1
35	Microscale investigation of dynamic impact of dry and saturated glass powder. AIP Conference Proceedings, 2018, , .	0.4	1
36	Workshop on Mathematical Challenges in Brittle Material Failure. Journal of Dynamic Behavior of Materials, 2020, 6, 14-23.	1.7	1

RYAN C HURLEY

#	Article	IF	CITATIONS
37	Stress and force measurement uncertainties in 3D granular materials. EPJ Web of Conferences, 2021, 249, 02009.	0.3	1
38	Challenges and opportunities in measuring time-resolved force chain evolution in 3D granular materials. Papers in Physics, 0, 14, 140003.	0.2	1
39	Force inference in granular materials: Uncertainty analysis and application to three-dimensional experiment design. Physical Review E, 2022, 105, .	2.1	1
40	Analysis of Shear Bands in Sand Under Reduced Gravity Conditions. Springer Series in Geomechanics and Geoengineering, 2017, , 499-505.	0.1	0
41	Simulations and experiments of dynamic granular compaction in non-ideal geometries. AIP Conference Proceedings, 2018, , .	0.4	0