

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7972106/publications.pdf Version: 2024-02-01

YII 7HEN

#	Article	IF	CITATIONS
1	Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications. CCS Chemistry, 2022, 4, 401-419.	7.8	28
2	Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy. Biomaterials, 2022, 280, 121261.	11.4	29
3	Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. Advanced Science, 2022, 9, e2104125.	11.2	68
4	Mobile Phone Flashlightâ€Excited Red Afterglow Bioimaging. Advanced Materials, 2022, 34, e2201280.	21.0	79
5	A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials, 2022, 284, 121533.	11.4	19
6	Ultralong blue room-temperature phosphorescence by cycloalkyl engineering. Materials Chemistry Frontiers, 2022, 6, 1606-1614.	5.9	15
7	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	8.2	85
8	The development of phosphorescent probes for <i>in vitro</i> and <i>in vivo</i> bioimaging. Biomaterials Science, 2021, 9, 285-300.	5.4	74
9	Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomaterials Science, 2021, 9, 1363-1373.	5.4	19
10	Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomaterials Science, 2021, 9, 3603-3620.	5.4	23
11	Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Nearâ€Infrared Construction. Small, 2021, 17, e2004723.	10.0	168
12	Polymerâ€based activatable optical probes for tumor fluorescence and photoacoustic imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1593.	6.1	17
13	Responsive boron biomaterials and their biomedical applications. Science China Chemistry, 2020, 63, 648-664.	8.2	43
14	Thermoresponsive Semiconducting Polymer Nanoparticles for Contrastâ€Enhanced Photoacoustic Imaging. Advanced Functional Materials, 2019, 29, 1903461.	14.9	53
15	Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics, 2019, 9, 7417-7430.	10.0	36
16	Metabolizable Semiconducting Polymer Nanoparticles for Second Nearâ€Infrared Photoacoustic Imaging. Advanced Materials, 2019, 31, e1808166.	21.0	288
17	A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nature Communications, 2019, 10, 2064.	12.8	210
18	Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. ACS Nano, 2019, 13, 5816-5825.	14.6	154

Xu Zhen

#	Article	IF	CITATIONS
19	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie, 2019, 131, 5981-5985.	2.0	43
20	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 5920-5924.	13.8	289
21	pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12, 49-55.	10.4	70
22	Recent Advances in Cell Membrane–Camouflaged Nanoparticles for Cancer Phototherapy. Small, 2019, 15, e1804105.	10.0	327
23	Cancer Phototherapy: Recent Advances in Cell Membrane-Camouflaged Nanoparticles for Cancer Phototherapy (Small 1/2019). Small, 2019, 15, 1970002.	10.0	4
24	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	12.8	764
25	Selfâ€Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Nearâ€Infrared Afterglow Imaging of Metastatic Tumors. Advanced Materials, 2018, 30, e1801331.	21.0	158
26	Dualâ€Peak Absorbing Semiconducting Copolymer Nanoparticles for First and Second Nearâ€Infrared Window Photothermal Therapy: A Comparative Study. Advanced Materials, 2018, 30, e1705980.	21.0	489
27	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano, 2018, 12, 2643-2651.	14.6	294
28	Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 2018, 12, 1801-1810.	14.6	299
29	Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. Nano Letters, 2018, 18, 1498-1505.	9.1	183
30	Macrotheranostic Probe with Diseaseâ€Activated Nearâ€Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imagingâ€Guided Therapy. Angewandte Chemie, 2018, 130, 7930-7934.	2.0	79
31	Temperatureâ€Correlated Afterglow of a Semiconducting Polymer Nanococktail for Imagingâ€Guided Photothermal Therapy. Angewandte Chemie, 2018, 130, 4002-4006.	2.0	66
32	Temperature orrelated Afterglow of a Semiconducting Polymer Nanococktail for Imagingâ€Guided Photothermal Therapy. Angewandte Chemie - International Edition, 2018, 57, 3938-3942.	13.8	251
33	Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols. ACS Applied Bio Materials, 2018, 1, 1147-1153.	4.6	23
34	Macrotheranostic Probe with Diseaseâ€Activated Nearâ€Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imagingâ€Guided Therapy. Angewandte Chemie - International Edition, 2018, 57, 7804-7808.	13.8	296
35	A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite. Analytical Chemistry, 2018, 90, 9301-9307.	6.5	152
36	Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS Nano, 2018, 12, 8520-8530.	14.6	305

Xu Zhen

#	Article	IF	CITATIONS
37	Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Research, 2018, 11, 5258-5280.	10.4	39
38	Selfâ€Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging. Advanced Functional Materials, 2017, 27, 1605397.	14.9	118
39	Near-infrared absorbing amphiphilic semiconducting polymers for photoacoustic imaging. Journal of Materials Chemistry B, 2017, 5, 4406-4409.	5.8	40
40	Photoacoustic Imaging: Selfâ€Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging (Adv. Funct. Mater. 8/2017). Advanced Functional Materials, 2017, 27, .	14.9	2
41	Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials, 2017, 127, 97-106.	11.4	119
42	Nanoprobes: Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite (Adv. Mater. 6/2017). Advanced Materials, 2017, 29, .	21.0	4
43	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. Small, 2017, 13, 1604139.	10.0	83
44	Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. Advanced Materials, 2017, 29, 1604764.	21.0	220
45	Light-driven liquid metal nanotransformers for biomedical theranostics. Nature Communications, 2017, 8, 15432.	12.8	327
46	Amphiphilic Semiconducting Oligomer for Near-Infrared Photoacoustic and Fluorescence Imaging. ACS Applied Materials & Interfaces, 2017, 9, 12332-12339.	8.0	72
47	Degradable Semiconducting Oligomer Amphiphile for Ratiometric Photoacoustic Imaging of Hypochlorite. ACS Nano, 2017, 11, 4174-4182.	14.6	202
48	Self-quenched semiconducting polymer nanoparticles for amplified inÂvivo photoacoustic imaging. Biomaterials, 2017, 119, 1-8.	11.4	151
49	Reaction-Based Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of Protein Sulfenic Acids. ACS Nano, 2017, 11, 358-367.	14.6	145
50	Nanoparticle Regrowth Enhances Photoacoustic Signals of Semiconducting Macromolecular Probe for In Vivo Imaging. Advanced Materials, 2017, 29, 1703693.	21.0	145
51	Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nature Biotechnology, 2017, 35, 1102-1110.	17.5	753
52	Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials, 2017, 145, 168-177.	11.4	155
53	Organic Nanoparticles: Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	21.0	1
54	Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Advanced Materials, 2017, 29, 1606665.	21.0	419

Xu Zhen

#	Article	IF	CITATIONS
55	Chemically treated carbon black waste and its potential applications. Journal of Hazardous Materials, 2017, 321, 62-72.	12.4	53
56	Toxicity assessment of carbon black waste: A by-product from oil refineries. Journal of Hazardous Materials, 2017, 321, 600-610.	12.4	28
57	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chemical Science, 2016, 7, 5118-5125.	7.4	113
58	Rapid toxicity screening of gasification ashes. Waste Management, 2016, 50, 93-104.	7.4	16
59	Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive <i>In Vivo</i> Imaging of Reactive Oxygen Species. ACS Nano, 2016, 10, 6400-6409.	14.6	288
60	Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for <i>in Vivo</i> Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 2016, 10, 4472-4481.	14.6	466
61	Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials, 2014, 35, 6439-6453.	11.4	93
62	Synthesis, Cellular Uptake, and Biodistribution of Wheyâ€Rich Nanoparticles. Macromolecular Bioscience, 2014, 14, 1149-1159.	4.1	9
63	Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials, 2013, 34, 1372-1382.	11.4	123
64	Facile Preparation of Paclitaxel Loaded Silk Fibroin Nanoparticles for Enhanced Antitumor Efficacy by Locoregional Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12638-12645.	8.0	96
65	Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan nanoparticles. Biomaterials, 2013, 34, 4667-4679.	11.4	195
66	Synthesis of Paclitaxelâ€Conjugated βâ€Cyclodextrin Polyrotaxane and Its Antitumor Activity. Angewandte Chemie - International Edition, 2013, 52, 7272-7277.	13.8	83
67	Alginic Acid Nanoparticles Prepared through Counterion Complexation Method as a Drug Delivery System. ACS Applied Materials & Interfaces, 2012, 4, 5325-5332.	8.0	47
68	Cellular entry fashion of hollow milk protein spheres. Soft Matter, 2011, 7, 11526.	2.7	27
69	The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials, 2011, 32, 9525-9535.	11.4	110