
Isabel de SÃ;-Nogueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/797183/publications.pdf Version: 2024-02-01

ISAREL DE SÃI-NOCHEIRA

#	Article	IF	CITATIONS
1	Tantalum Doped Bioactive Glass: Towards a Pro-Regenerative and Antibacterial Response. , 2022, 8, .		Ο
2	Subcritical Water Extraction and Hydrolysis of Cod (Gadus morhua) Frames to Produce Bioactive Protein Extracts. Foods, 2021, 10, 1222.	4.3	20
3	Multitask ATPases (NBDs) of bacterial ABC importers type I and their interspecies exchangeability. Scientific Reports, 2020, 10, 19564.	3.3	8
4	Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. Journal of Supercritical Fluids, 2020, 160, 104793.	3.2	31
5	Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Applied Bio Materials, 2019, 2, 4346-4355.	4.6	96
6	Nontoxic glasses: Preparation, structural, electrical and biological properties. International Journal of Applied Ceramic Technology, 2019, 16, 1885-1894.	2.1	12
7	Semi-continuous extraction/hydrolysis of spent coffee grounds with subcritical water. Journal of Industrial and Engineering Chemistry, 2019, 72, 453-456.	5.8	36
8	Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin. AAPS PharmSciTech, 2017, 18, 2579-2585.	3.3	42
9	Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. Journal of Supercritical Fluids, 2017, 128, 138-144.	3.2	46
10	The MsmX ATPase plays a crucial role in pectin mobilization by Bacillus subtilis. PLoS ONE, 2017, 12, e0189483.	2.5	14
11	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
12	Towards Novel Amino Acid-Base Contacts in Gene Regulatory Proteins: AraR – A Case Study. PLoS ONE, 2014, 9, e111802.	2.5	2
13	The importance of the Abn2 calcium cluster in the endo-1,5-arabinanase activity from Bacillus subtilis. Journal of Biological Inorganic Chemistry, 2014, 19, 505-513.	2.6	4
14	Development of antimicrobial Ion Jelly fibers. RSC Advances, 2013, 3, 24400.	3.6	10
15	Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from <i>Bacillus subtilis</i> . FEBS Journal, 2011, 278, 2511-2524.	4.7	9
16	New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. FEBS Journal, 2010, 277, 4562-4574.	4.7	41
17	A Multitask ATPase Serving Different ABC-Type Sugar Importers in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 5312-5318.	2.2	53
18	Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-α-arabinanase fromBacillus subtilis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 636-638.	0.7	3

ISABEL DE SÃi-NOGUEIRA

#	Article	IF	CITATIONS
19	Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology (United Kingdom), 2008, 154, 2719-2729.	1.8	56
20	Characterization of <i>abn2</i> (<i>yxiA</i>), Encoding a <i>Bacillus subtilis</i> GH43 Arabinanase, Abn2, and Its Role in Arabino-Polysaccharide Degradation. Journal of Bacteriology, 2008, 190, 4272-4280.	2.2	41
21	Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Nucleic Acids Research, 2007, 35, 4755-4766.	14.5	16
22	trans -Acting Factors and cis Elements Involved in Glucose Repression of Arabinan Degradation in Bacillus subtilis. Journal of Bacteriology, 2007, 189, 8371-8376.	2.2	10
23	Functional Domains of the Bacillus subtilis Transcription Factor AraR and Identification of Amino Acids Important for Nucleoprotein Complex Assembly and Effector Binding. Journal of Bacteriology, 2006, 188, 3024-3036.	2.2	26
24	Transcriptional Regulation of Genes Encoding Arabinan-Degrading Enzymes in Bacillus subtilis. Journal of Bacteriology, 2004, 186, 1287-1296.	2.2	21
25	Purification, characterization and functional analysis of an endo-arabinanase (AbnA) fromBacillus subtilis. FEMS Microbiology Letters, 2004, 241, 41-48.	1.8	35
26	Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology (United Kingdom), 2003, 149, 2345-2355.	1.8	30
27	Control of the Arabinose Regulon in Bacillus subtilis by AraR In Vivo: Crucial Roles of Operators, Cooperativity, and DNA Looping. Journal of Bacteriology, 2001, 183, 4190-4201.	2.2	26
28	Mode of action of AraR, the key regulator of l-arabinose metabolism in Bacillus subtilis. Molecular Microbiology, 1999, 33, 476-489.	2.5	53
29	Assessment of phenotypic and genetic diversity in the yeast genusMetschnikowia. Antonie Van Leeuwenhoek, 1995, 68, 101-110.	1.7	19
30	Ribosomal DNA spacer probes for yeast identification: Studies in the genusMetschnikowia. Yeast, 1991, 7, 167-172.	1.7	21