
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7971808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP–FRB Interaction and Autophagy. Cells, 2022, 11, 385.	4.1	7
2	Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts. Journal of Proteomics, 2022, 258, 104530.	2.4	6
3	Pep19 Has a Positive Effect on Insulin Sensitivity and Ameliorates Both Hepatic and Adipose Tissue Phenotype of Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2022, 23, 4082.	4.1	1
4	The potential anti-inflammatory and anti-nociceptive effects of rat hemopressin (PVNFKFLSH) in experimental arthritis. European Journal of Pharmacology, 2021, 890, 173636.	3.5	4
5	Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology, 2021, 183, 108406.	4.1	15
6	Peptidomic profiling of cerebrospinal fluid from patients with intracranial saccular aneurysms. Journal of Proteomics, 2021, 240, 104188.	2.4	3
7	Bothrops Jararaca Snake Venom Modulates Key Cancer-Related Proteins in Breast Tumor Cell Lines. Toxins, 2021, 13, 519.	3.4	5
8	New Intracellular Peptide Derived from Hemoglobin Alpha Chain Induces Glucose Uptake and Reduces Blood Glycemia. Pharmaceutics, 2021, 13, 2175.	4.5	3
9	Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules, 2020, 10, 1229.	4.0	17
10	Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules, 2020, 25, 1093.	3.8	8
11	The Relevance of Thimet Oligopeptidase in the Regulation of Energy Metabolism and Diet-Induced Obesity. Biomolecules, 2020, 10, 321.	4.0	13
12	Interleukin-2 as immunotherapeutic in the autoimmune diseases. International Immunopharmacology, 2020, 81, 106296.	3.8	13
13	NFKF is a synthetic fragment derived from rat hemopressin that protects mice from neurodegeneration. Neuroscience Letters, 2020, 721, 134765.	2.1	8
14	The impact of rattlesnake venom on mice cerebellum proteomics points to synaptic inhibition and tissue damage. Journal of Proteomics, 2020, 221, 103779.	2.4	8
15	Tumourâ€derived transforming growth factorâ€Î² signalling contributes to fibrosis in patients with cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1045-1059.	7.3	38
16	Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules, 2019, 9, 382.	4.0	21
17	Effect of Protein Denaturation and Enzyme Inhibitors on Proteasomal-Mediated Production of Peptides in Human Embryonic Kidney Cells. Biomolecules, 2019, 9, 207.	4.0	8
18	Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules, 2019, 9, 150.	4.0	34

#	Article	IF	CITATIONS
19	Characterization of Intracellular Peptides from Zebrafish (<i>Danio rerio</i>) Brain. Zebrafish, 2019, 16, 240-251.	1.1	16
20	Substrate Capture Assay Using Inactive Oligopeptidases to Identify Novel Peptides. Methods in Molecular Biology, 2018, 1719, 97-105.	0.9	3
21	Neurolysin: From Initial Detection to Latest Advances. Neurochemical Research, 2018, 43, 2017-2024.	3.3	17
22	Edelfosine: An Antitumor Drug Prototype. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 865-874.	1.7	6
23	A Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. Journal of Proteomics, 2017, 151, 24-32.	2.4	21
24	A novel peptide that improves metabolic parameters without adverse central nervous system effects. Scientific Reports, 2017, 7, 14781.	3.3	19
25	Interferon-gamma activity is potentiated by an intracellular peptide derived from the human 19S ATPase regulatory subunit 4 of the proteasome. Journal of Proteomics, 2017, 151, 74-82.	2.4	15
26	Generation of G protein-coupled receptor antibodies differentially sensitive to conformational states. PLoS ONE, 2017, 12, e0187306.	2.5	10
27	Analysis of the Yeast Peptidome and Comparison with the Human Peptidome. PLoS ONE, 2016, 11, e0163312.	2.5	28
28	Anxiogenic-like effects induced by hemopressin in rats. Pharmacology Biochemistry and Behavior, 2015, 129, 7-13.	2.9	29
29	Reduced Levels of Proteasome Products in a Mouse Striatal Cell Model of Huntington's Disease. PLoS ONE, 2015, 10, e0145333.	2.5	19
30	Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells. PLoS ONE, 2014, 9, e103604.	2.5	44
31	Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?. Frontiers in Cellular Neuroscience, 2014, 8, 59.	3.7	22
32	Neurolysin Knockout Mice Generation and Initial Phenotype Characterization. Journal of Biological Chemistry, 2014, 289, 15426-15440.	3.4	41
33	Intracellular peptides: From discovery to function. EuPA Open Proteomics, 2014, 3, 143-151.	2.5	47
34	Peptidomic analysis of the neurolysin-knockout mouse brain. Journal of Proteomics, 2014, 111, 238-248.	2.4	25
35	Hemopressin, an inverse agonist of cannabinoid receptors, inhibits neuropathic pain in rats. Peptides, 2014, 56, 125-131.	2.4	29
36	A Novel Intracellular Peptide Derived from G1/S Cyclin D2 Induces Cell Death. Journal of Biological Chemistry, 2014, 289, 16711-16726.	3.4	42

#	Article	IF	CITATIONS
37	Using Mass Spectrometry-Based Peptidomics to understand the Brain and Disorders such as Parkinson's Disease and Schizophrenia. Current Topics in Medicinal Chemistry, 2014, 14, 369-381.	2.1	10
38	AGH is a new hemoglobin alpha-chain fragment with antinociceptive activity. Peptides, 2013, 48, 10-20.	2.4	12
39	Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib. PLoS ONE, 2013, 8, e53263.	2.5	72
40	Bioactive Peptides Produced by Limited Proteolysis. Colloquium Series on Neuropeptides, 2012, 1, 1-92.	1.0	5
41	Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14â€3â€3ε and calmodulin. Proteomics, 2012, 12, 2641-2655.	2.2	38
42	Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction. FEBS Letters, 2012, 586, 3287-3292.	2.8	23
43	Different Approaches, One Target: Understanding Cellular Mechanisms of Parkinson's and Alzheimer's Diseases. Revista Brasileira De Psiquiatria, 2012, 34, 194-218.	1.7	9
44	Acute cocaine treatment increases thimet oligopeptidase in the striatum of rat brain. Biochemical and Biophysical Research Communications, 2012, 419, 724-727.	2.1	0
45	Peptidomic Analysis of HEK293T Cells: Effect of the Proteasome Inhibitor Epoxomicin on Intracellular Peptides. Journal of Proteome Research, 2012, 11, 1981-1990.	3.7	55
46	Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance. Proteomics, 2012, 12, 2668-2681.	2.2	44
47	The Intracellular Pharmacokinetics of Terminally Capped Peptides. Molecular Pharmaceutics, 2012, 9, 1077-1086.	4.6	23
48	The Cysteine-Rich Protein Thimet Oligopeptidase as a Model of the Structural Requirements for S-glutathiolation and Oxidative Oligomerization. PLoS ONE, 2012, 7, e39408.	2.5	13
49	Peptidomic Analysis of Human Cell Lines. Journal of Proteome Research, 2011, 10, 1583-1592.	3.7	64
50	Hemoglobin-derived Peptides as Novel Type of Bioactive Signaling Molecules. AAPS Journal, 2010, 12, 658-669.	4.4	102
51	Similar Intracellular Peptide Profile of TAP1/β2 Microglobulin Double-Knockout Mice and C57BL/6 Wild-Type Mice as Revealed by Peptidomic Analysis. AAPS Journal, 2010, 12, 608-616.	4.4	18
52	Hemopressins and other hemoglobinâ€derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in <i>Cpe</i> ^{<i>fat/fat</i>} mice. Journal of Neurochemistry, 2010, 113, 871-880.	3.9	62
53	Biotecnologia translacional: hemopressina e outros peptÃdeos intracelulares. Estudos Avancados, 2010, 24, 109-121.	0.5	4
54	CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in <i>Purkinje cell degeneration</i> mice. FASEB Journal, 2010, 24, 1813-1823.	0.5	52

#	Article	IF	CITATIONS
55	Catalytic properties of thimet oligopeptidase H600A mutant. Biochemical and Biophysical Research Communications, 2010, 394, 429-433.	2.1	4
56	Analysis of Intracellular Substrates and Products of Thimet Oligopeptidase in Human Embryonic Kidney 293 Cells. Journal of Biological Chemistry, 2009, 284, 14105-14116.	3.4	64
57	Interaction with calmodulin is important for the secretion of thimet oligopeptidase following stimulation. FEBS Journal, 2009, 276, 4358-4371.	4.7	10
58	Novel endogenous peptide agonists of cannabinoid receptors. FASEB Journal, 2009, 23, 3020-3029.	0.5	135
59	A novel bradykinin potentiating peptide isolated from <i>Bothrops jararacussu</i> venom using catallytically inactive oligopeptidase EP24.15. FEBS Journal, 2008, 275, 2442-2454.	4.7	27
60	Oligomerization of the cysteinyl-rich oligopeptidase EP24.15 is triggered by S-glutathionylation. Free Radical Biology and Medicine, 2008, 44, 1180-1190.	2.9	29
61	Intracellular Peptides as Natural Regulators of Cell Signaling. Journal of Biological Chemistry, 2008, 283, 24448-24459.	3.4	84
62	Conformation State-sensitive Antibodies to G-protein-coupled Receptors*. Journal of Biological Chemistry, 2007, 282, 5116-5124.	3.4	94
63	The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Cly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochemical Journal, 2007, 404, 279-288.	3.7	19
64	Hemopressin is an inverse agonist of CB ₁ cannabinoid receptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20588-20593.	7.1	216
65	Substrate phosphorylation affects degradation and interaction to endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. Biochemical and Biophysical Research Communications, 2006, 339, 520-525.	2.1	19
66	Role of the Cys18–Cys274 disulfide bond and of the third extracellular loop in the constitutive activation and internalization of angiotensin II type 1 receptor. Regulatory Peptides, 2006, 134, 132-140.	1.9	19
67	Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia. Journal of Neurochemistry, 2006, 97, 13-21.	3.9	33
68	A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor. Biological Chemistry, 2006, 387, 269-76.	2.5	8
69	14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. Journal of Neurochemistry, 2005, 93, 10-25.	3.9	29
70	Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificity. FEBS Journal, 2005, 272, 2978-2992.	4.7	18
71	ACE gene titration in mice uncovers a new mechanism for ACE on the control of body weight. Physiological Genomics, 2005, 20, 173-182.	2.3	38
72	Antinociceptive action of hemopressin in experimental hyperalgesia. Peptides, 2005, 26, 431-436.	2.4	54

#	Article	IF	CITATIONS
73	A Transcript Finishing Initiative for Closing Gaps in the Human Transcriptome. Genome Research, 2004, 14, 1413-1423.	5.5	22
74	Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis. Journal of Bacteriology, 2004, 186, 2164-2172.	2.2	406
75	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	2.6	119
76	Intracellullar peptides as putative natural regulators of protein interactions. Journal of Neurochemistry, 2004, 91, 769-777.	3.9	74
77	Peptidase activities in rats treated chronically with N-nitro-l-arginine methyl ester (L-NAME). Biochemical Pharmacology, 2004, 68, 205-214.	4.4	20
78	The Intracellular Distribution and Secretion of Endopeptidases 24.15 415 (Ec 3.4.24.15) and 24.16 (Ec) Tj ETQqC	0.0 ggBT	/Overlock 10
79	HEMODYNAMIC EFFECTS OF HEMOPRESSIN IN CONSIOUS RATS. Journal of Hypertension, 2004, 22, S90-S91.	0.5	0
80	A structure-based site-directed mutagenesis study on the neurolysin (EC 3.4.24.16) and thimet oligopeptidase (EC 3.4.24.15) catalysis. FEBS Letters, 2003, 541, 89-92.	2.8	23
81	Novel Natural Peptide Substrates for Endopeptidase 24.15, Neurolysin, and Angiotensin-converting Enzyme. Journal of Biological Chemistry, 2003, 278, 8547-8555.	3.4	142
82	Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa. Journal of Bacteriology, 2003, 185, 1018-1026.	2.2	307
83	Temperature and salts effects on the peptidase activities of the recombinant metallooligopeptidases neurolysin and thimet oligopeptidase. FEBS Journal, 2002, 269, 4326-4334.	0.2	17
84	Differential expression of glycosaminoglycans and proteoglycans in the migratory pathway of the primordial germ cells of the mouse. Histochemistry and Cell Biology, 2002, 118, 69-78.	1.7	29
85	Substrate Specificity Characterization of Recombinant Metallo Oligo-Peptidases Thimet Oligopeptidase and Neurolysinâ€. Biochemistry, 2001, 40, 4417-4425.	2.5	77
86	Selective Neurotensin-Derived Internally Quenched Fluorogenic Substrates for Neurolysin (EC) Tj ETQq0 0 0 rgB1 Biochemistry, 2001, 292, 257-265.	/Overlocl 2.4	t 10 Tf 50 22 36
87	Comparative fine structural distribution of endopeptidase 24.15 (EC3.4.24.15) and 24.16 (EC3.4.24.16) in rat brain. Journal of Comparative Neurology, 2001, 438, 399-410.	1.6	51
88	Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. Journal of Cellular Biochemistry, 2000, 76, 478-488.	2.6	11
89	The Neuropeptide Processing Enzyme EC 3.4.24.15 Is Modulated by Protein Kinase A Phosphorylation. Journal of Biological Chemistry, 2000, 275, 36514-36522.	3.4	43
90	Molecular and Immunochemical Evidences Demonstrate That Endooligopeptidase A Is the Predominant Cytosolic Oligopeptidase of Rabbit Brain. Biochemical and Biophysical Research Communications, 2000, 269, 7-13.	2.1	30

#	Article	IF	CITATIONS
91	The association of metalloendopeptidase EC 3.4.24.15 at the extracellular surface of the AtT-20 cell plasma membrane. Brain Research, 1999, 835, 113-124.	2.2	62

92 Differential subcellular distribution of neurolysin (EC 3.4.24.16) and thimet oligopeptidase (EC) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70

93	Secretion of Metalloendopeptidase 24.15 (EC 3.4.24.15). DNA and Cell Biology, 1999, 18, 781-789.	1.9	54
94	Confocal Microscopy Reveals Thimet Oligopeptidase (EC 3.4.24.15) and Neurolysin (EC 3.4.24.16) in the Classical Secretory Pathway. DNA and Cell Biology, 1999, 18, 323-331.	1.9	33
95	Thimet Oligopeptidase (EC 3.4.24.15), a Novel Protein on the Route of MHC Class I Antigen Presentation. Biochemical and Biophysical Research Communications, 1999, 255, 591-595.	2.1	74
96	Thimet Oligopeptidase and the Stability of MHC Class I Epitopes in Macrophage Cytosol. Biochemical and Biophysical Research Communications, 1999, 255, 596-601.	2.1	50
97	Expression of the AMPA-type glutamate receptor subunits in the chick optic tectum changes biphasically after retinal deafferentation. Brain Research, 1998, 810, 283-287.	2.2	11
98	Neuropeptide Specificity and Inhibition of Recombinant Isoforms of the Endopeptidase 3.4.24.16 Family: Comparison with the Related Recombinant Endopeptidase 3.4.24.15. Biochemical and Biophysical Research Communications, 1998, 250, 5-11.	2.1	80
99	Structural features that make oligopeptides susceptible substrates for hydrolysis by recombinant thimet oligopeptidase. Biochemical Journal, 1997, 324, 517-522.	3.7	63
100	Species Specificity of Thimet Oligopeptidase (EC 3.4.24.15). Biological Chemistry Hoppe-Seyler, 1996, 377, 283-292.	1.4	12
101	Characterization of an endooligopeptidase A-like protein in PC12 cells: Activity modulation by cAMP but not by basic fibroblast growth factor. Journal of Cellular Biochemistry, 1995, 57, 311-320.	2.6	10
102	Structural requirements of bioactive peptides for interaction with endopeptidase 22.19. Neuropeptides, 1994, 26, 281-287.	2.2	22
103	Secretion of a Neuropeptide-Metabolizing Enzyme Similar to Endopeptidase 22.19 by Glioma C6-Cells. Biochemical and Biophysical Research Communications, 1993, 191, 275-281.	2.1	33
104	Dynorphin-Derived Peptides Reveal the Presence of a Critical Cysteine for the Activity of Brain Endo-oligopeptidase A. Biochemical and Biophysical Research Communications, 1993, 197, 501-507.	2.1	11
105	Circadian Rhythm of the Endopeptidase 22.19 (EC 3.4.22.19) in the Rat Brain. Chronobiology International, 1992, 9, 243-249.	2.0	9
106	Neurons of the chick brain and retina expressing both α-bungarotoxin-sensitive and α-bungarotoxin-insensitive nicotinic acetylcholine receptors: an immunohistochemical analysis. Brain Research, 1992, 590, 193-200.	2.2	48
107	Endo-Oligopeptidase A., a Putative Enkephalin-Generating Enzyme, in the Vertebrate Retina. Journal of Neurochemistry, 1991, 57, 1643-1649.	3.9	13