
Izortze Santin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7971695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	3.5	398
2	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.6	226
3	Epigenetic Defects ofGNASin Patients with Pseudohypoparathyroidism and Mild Features of Albright's Hereditary Osteodystrophy. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2370-2373.	3.6	157
4	<i>PTPN2</i> , a Candidate Gene for Type 1 Diabetes, Modulates Pancreatic β-Cell Apoptosis via Regulation of the BH3-Only Protein Bim. Diabetes, 2011, 60, 3279-3288.	0.6	127
5	Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and <i>β</i> â€cell apoptosis. Diabetes, Obesity and Metabolism, 2013, 15, 71-81.	4.4	124
6	<i>TYK2</i> , a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes, 2015, 64, 3808-3817.	0.6	98
7	T _H 17 (and T _H 1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity, 2009, 42, 69-73.	2.6	94
8	<i>BACH2</i> , a Candidate Risk Gene for Type 1 Diabetes, Regulates Apoptosis in Pancreatic β-Cells via JNK1 Modulation and Crosstalk With the Candidate Gene <i>PTPN2</i> . Diabetes, 2014, 63, 2516-2527.	0.6	92
9	USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death and Disease, 2012, 3, e419-e419.	6.3	63
10	The Role of IncRNAs in Gene Expression Regulation through mRNA Stabilization. Non-coding RNA, 2021, 7, 3.	2.6	58
11	The Transcription Factor C/EBP delta Has Anti-Apoptotic and Anti-Inflammatory Roles in Pancreatic Beta Cells. PLoS ONE, 2012, 7, e31062.	2.5	53
12	IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia, 2014, 57, 502-511.	6.3	47
13	An Activating Mutation in <i>STAT3</i> Results in Neonatal Diabetes Through Reduced Insulin Synthesis. Diabetes, 2017, 66, 1022-1029.	0.6	46
14	The T1D-associated lncRNA <i>Lnc13</i> modulates human pancreatic β cell inflammation by allele-specific stabilization of <i>STAT1</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9022-9031.	7.1	43
15	Killer Cell Immunoglobulin-Like Receptor (KIR) Genes in the Basque Population: Association Study of KIR Gene Contents With Type 1 Diabetes Mellitus. Human Immunology, 2006, 67, 118-124.	2.4	42
16	A novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylation. Scientific Reports, 2019, 9, 4220.	3.3	33
17	DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia, 2019, 62, 459-472.	6.3	32
18	Long-term and acute effects of gliadin on small intestine of patients on potentially pathogenic networks in celiac disease. Autoimmunity, 2010, 43, 131-139.	2.6	28

IZORTZE SANTIN

#	Article	IF	CITATIONS
19	Association of KIR2DL5B gene with celiac disease supports the susceptibility locus on 19q13.4. Genes and Immunity, 2007, 8, 171-176.	4.1	20
20	The functional R620W variant of the <i>PTPN22 </i> gene is associated with celiac disease. Tissue Antigens, 2008, 71, 247-249.	1.0	20
21	Implication of m6A mRNA Methylation in Susceptibility to Inflammatory Bowel Disease. Epigenomes, 2020, 4, 16.	1.8	20
22	Toll-like receptor 4 (TLR4) gene polymorphisms in celiac disease. Tissue Antigens, 2007, 70, 495-498.	1.0	18
23	Combined Functional and Positional Gene Information for the Identification of Susceptibility Variants in Celiac Disease. Gastroenterology, 2008, 134, 738-746.	1.3	18
24	Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods in Molecular Biology, 2015, 1433, 21-54.	0.9	18
25	Exploring the diabetogenicity of the HLA-B18-DR3 CEH: independent association with T1D genetic risk close to HLA-DOA. Genes and Immunity, 2009, 10, 596-600.	4.1	16
26	No Association of TLR2 and TLR4 Polymorphisms with Type I Diabetes Mellitus in the Basque Population. Annals of the New York Academy of Sciences, 2006, 1079, 268-272.	3.8	15
27	Celiac Diasease–associated IncRNA Named <i>HCG14</i> Regulates <i>NOD1</i> Expression in Intestinal Cells. Journal of Pediatric Gastroenterology and Nutrition, 2018, 67, 225-231.	1.8	13
28	Boosting Cholesterol Efflux from Foam Cells by Sequential Administration of rHDL to Deliver MicroRNA and to Remove Cholesterol in a Tripleâ€Cell 2D Atherosclerosis Model. Small, 2022, 18, e2105915.	10.0	13
29	A regulatory single nucleotide polymorphism in the ubiquitin D gene associated with celiac disease. Human Immunology, 2010, 71, 96-99.	2.4	9
30	MAGI2 Gene Region and Celiac Disease. Frontiers in Nutrition, 2019, 6, 187.	3.7	8
31	Functional implication of celiac disease associated IncRNAs in disease pathogenesis. Computers in Biology and Medicine, 2018, 102, 369-375.	7.0	6
32	Upregulation of KIR3DL1 gene expression in intestinal mucosa in active celiac disease. Human Immunology, 2011, 72, 617-620.	2.4	5
33	Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease. Genes, 2018, 9, 245.	2.4	5
34	Long non-coding RNA-regulated pathways in pancreatic β cells: Their role in diabetes. International Review of Cell and Molecular Biology, 2021, 359, 325-355.	3.2	1
35	Subcellular Fractionation from Fresh and Frozen Gastrointestinal Specimens. Journal of Visualized Experiments, 2018, , .	0.3	0